Zobrazeno 1 - 10
of 153
pro vyhledávání: '"Hashiguchi Hiroki"'
Autor:
Huth Martin, Kroner Valentin, El Imari Yassine, Aschauer Stefan, Sagawa Ryusuke, Hashiguchi Hiroki, Nakamura Akiho, Strüder Lothar, Soltau Heike
Publikováno v:
BIO Web of Conferences, Vol 129, p 13014 (2024)
Externí odkaz:
https://doaj.org/article/8c617eca0e994405aecbc9e92dd5a88b
Autor:
Sagawa Ryusuke, Hashiguchi Hiroki, Nakamura Akiho, Shibagaki Shoko, Kazama Yutaka, Huth Martin, Imari Yassine, Kroner Valentin, Aschauer Stefan
Publikováno v:
BIO Web of Conferences, Vol 129, p 05004 (2024)
Externí odkaz:
https://doaj.org/article/05269fe2b748478b8d38c05f154af249
Autor:
Segawa Yuhiro, Nakamura Akiho, Hashiguchi Hiroki, Kohno Yuji, Ohta Shigemasa, Seki Takehito, Shibata Naoya
Publikováno v:
BIO Web of Conferences, Vol 129, p 04038 (2024)
Externí odkaz:
https://doaj.org/article/007385d9dead44e6b076d9bee3e6137a
Chi-square approximation for the distribution of individual eigenvalues of a singular Wishart matrix
Autor:
Shimizu, Koki, Hashiguchi, Hiroki
This paper discusses the approximate distributions of eigenvalues of a singular Wishart matrix. We give the approximate joint density of eigenvalues by Laplace approximation for the hyper-geometric functions of matrix arguments. Furthermore, we show
Externí odkaz:
http://arxiv.org/abs/2306.05160
Autor:
Shimizu, Koki, Hashiguchi, Hiroki
This paper discusses the computation of exact powers for Roy's test in multivariate analysis of variance~(MANOVA). We derive an exact expression for the largest eigenvalue of a singular noncentral Beta matrix in terms of the product of zonal polynomi
Externí odkaz:
http://arxiv.org/abs/2205.11776
Autor:
Shimizu, Koki, Hashiguchi, Hiroki
In this study, we derive the density and distribution function of a ratio of the largest and smallest eigenvalues of a singular beta-Wishart matrix for the sphericity test. These functions can be expressed in terms of the product of Jack polynomials.
Externí odkaz:
http://arxiv.org/abs/2108.13283
In this study, we derive the exact distributions of eigenvalues of a singular Wishart matrix under an elliptical model. We define generalized heterogeneous hypergeometric functions with two matrix arguments and provide convergence conditions for thes
Externí odkaz:
http://arxiv.org/abs/2104.12552
We derive a simple and precise approximation to probability density functions in sampling distributions based on the Fourier cosine series. After clarifying the required conditions, we illustrate the approximation on two examples: the distribution of
Externí odkaz:
http://arxiv.org/abs/2103.11712
Autor:
van Heijst, Sabrya E., Mukai, Masaki, Okunishi, Eiji, Hashiguchi, Hiroki, Roest, Laurien I., Maduro, Louis, Rojo, Juan, Conesa-Boj, Sonia
Tailoring the specific stacking sequences (polytypes) of layered materials represents a powerful strategy to identify and design novel physical properties. While nanostructures built upon transition-metal dichalcogenides (TMDs) with either the 2H or
Externí odkaz:
http://arxiv.org/abs/2009.08477
Autor:
Shimizu, Koki, Hashiguchi, Hiroki
In this paper, the exact distribution of the largest eigenvalue of a singular random matrix for multivariate analysis of variance (MANOVA) is discussed. The key to developing the distribution theory of eigenvalues of a singular random matrix is to us
Externí odkaz:
http://arxiv.org/abs/2004.09833