Zobrazeno 1 - 10
of 78
pro vyhledávání: '"Hasanov, Anvar"'
Autor:
Ruzhansky, Michael, Hasanov, Anvar
When studying boundary value problems for some partial differential equations arising in applied mathematics, we often have to study the solution of a system of partial differential equations satisfied by hypergeometric functions and find explicit li
Externí odkaz:
http://arxiv.org/abs/2005.11685
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The double-layer potential plays an important role in solving boundary value problems for elliptic equations. All the fundamental solutions of the generalized bi-axially symmetric Helmholtz equation were known, and only for the first one was construc
Externí odkaz:
http://arxiv.org/abs/1807.03639
Autor:
Hasanov, Anvar1,2 (AUTHOR) anvarhasanov@yahoo.com, Ergashev, Tuhtasin G.3 (AUTHOR)
Publikováno v:
Journal of Mathematical Sciences. Aug2023, Vol. 274 Issue 2, p215-227. 13p.
With the help of some techniques based on certain inverse pairs of symbolic operators, the authors investigated several decomposition formulas associated with Srivastava's Hypergeometric functions of three variables. Some operator identities have bee
Externí odkaz:
http://arxiv.org/abs/1509.06156
Autor:
Salakhitdinov, M. S., Hasanov, Anvar
In [18], fundamental solutions for the generalized bi-axially symmetric Helmholtz equation were constructed in $R_2^ + = \left\{ {\left( {x,y} \right):x > 0,y > 0} \right\}.$ They contain Kummer's confluent hypergeometric functions in three variables
Externí odkaz:
http://arxiv.org/abs/1401.5144
Autor:
Bin-Saad, Maged G., Hasanov, Anvar
In investigation of boundary-value problems for certain partial differential equations arising in applied mathematics, we often need to study the solution of system of partial differential equations satisfied by hypergeometric functions and find expl
Externí odkaz:
http://arxiv.org/abs/1401.6928
Fundamental solutions for a class of three-dimensional elliptic equations with singular coefficients
Autor:
Hasanov, Anvar, Karimov, E. T.
We consider an equation $$ L_{\alpha ,\beta ,\gamma} (u) \equiv u_{xx} + u_{yy} + u_{zz} + \displaystyle \frac{{2\alpha}}{x}u_x + \displaystyle \frac{{2\beta}}{y}u_y + \displaystyle \frac{{2\gamma}}{z}u_z = 0 $$ in a domain ${\bf R}_3^ + \equiv {{({x
Externí odkaz:
http://arxiv.org/abs/0901.0468
The double-layer potential plays an important r$\hat{\rm o}$le in solving boundary value problems of elliptic equations. Here, in this paper, we aim at introducing and investigating double layer potentials for a generalized bi-axially symmetric Helmh
Externí odkaz:
http://arxiv.org/abs/0810.3979
Mazkur maqolada O’zbekiston respublikasining eng janubiy qismida joylashgan Surxondaryo viloyati, xizmat ko`rsatish sohalar, dunyo hamjamiyatida tutgan nufuzi, bozor, urbanizatsiyasi, shahar va qishloq joylarda xizmat ko`rsatish tarkibi, shaxarlar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::22bb4c51b48e3816967edfbb3e944f21