Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Hasan, Ibrahem Yakzan"'
In this paper, we define partially capable Lie superalgebra. As an application we classify all capable nilpotent Lie superalgebras of dimension less than equal to five.
Comment: arXiv admin note: text overlap with arXiv:2210.00254, arXiv:2303.15
Comment: arXiv admin note: text overlap with arXiv:2210.00254, arXiv:2303.15
Externí odkaz:
http://arxiv.org/abs/2308.10551
We provide a bound on the dimension of Schur multiplier of a finite dimensional nilpotent Lie superalgebra which is more precise than the previous bounds on the dimension of Schur multiplier of Lie superalgebra.
Externí odkaz:
http://arxiv.org/abs/2305.00755
In this article, we discuss the category $\mathcal{SN}_2$ where the objects are finite-dimensional nilpotent Lie superalgebras of class two and the category $\mathcal{SSKE}$ where the objects are skew-supersymmetric bilinear maps. We establish relati
Externí odkaz:
http://arxiv.org/abs/2303.15088
In this article, we compute the Schur multiplier of all generalized Heisenberg Lie superalgebras of rank $2$. We discuss the structure of $\otimes^3H$ and $\wedge^3H$ where $H$ is a generalized Heisenberg Lie superalgebra of rank $\leq2$. Moreover, w
Externí odkaz:
http://arxiv.org/abs/2210.00254
In this paper, we determine upper bound for the non-abelian tensor product of finite dimensional Lie superalgebra. More precisely, if $L$ is a non-abelian nilpotent Lie superalgebra of dimension $(k \mid l)$ and its derived subalgebra has dimension $
Externí odkaz:
http://arxiv.org/abs/2209.09514
In this article, we define the capable pairs of Lie superalgebras. We classify all capable pairs of abelian and Heisenberg Lie superalgebras. After that we discuss on pairs of Lie superalgebras with derived subalgebra of dimension one and a non-abeli
Externí odkaz:
http://arxiv.org/abs/2207.11445
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Indian Journal of Pure & Applied Mathematics; Mar2024, Vol. 55 Issue 1, p78-93, 16p