Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Hartmut Schwetlick"'
Autor:
Tatiana Subkhankulova, Karen Camargo Sosa, Leonid A. Uroshlev, Masataka Nikaido, Noah Shriever, Artem S. Kasianov, Xueyan Yang, Frederico S. L. M. Rodrigues, Thomas J. Carney, Gemma Bavister, Hartmut Schwetlick, Jonathan H. P. Dawes, Andrea Rocco, Vsevolod J. Makeev, Robert N. Kelsh
Publikováno v:
Nature Communications, Vol 14, Iss 1, Pp 1-19 (2023)
Neural crest cells are highly multipotent stem cells, but it remains unclear how their fate restriction to specific fates occurs. Here, the authors show in zebrafish that broad multipotency is retained even after migration, suggesting that fate restr
Externí odkaz:
https://doaj.org/article/160bd44df47e4c13899e32cf8a80ef54
Autor:
Kleio Petratou, Tatiana Subkhankulova, James A Lister, Andrea Rocco, Hartmut Schwetlick, Robert N Kelsh
Publikováno v:
PLoS Genetics, Vol 14, Iss 10, p e1007402 (2018)
Multipotent neural crest (NC) progenitors generate an astonishing array of derivatives, including neuronal, skeletal components and pigment cells (chromatophores), but the molecular mechanisms allowing balanced selection of each fate remain unknown.
Externí odkaz:
https://doaj.org/article/9bab26a42db84ffd8fa6bfd1b67cc6c9
Publikováno v:
Discrete & Continuous Dynamical Systems - S. 13:1395-1410
We consider the dynamics of a Hamiltonian particle forced by a rapidly oscillating potential in \begin{document}$ m $\end{document} -dimensional space. As alternative to the established approach of averaging Hamiltonian dynamics by reformulating the
Autor:
Gemma Bavister, Masataka Nikaido, L. A. Uroshlev, Andrea Rocco, Tatiana Subkhankulova, Hartmut Schwetlick, Xueyan Yang, Robert N. Kelsh, Frederico S.L.M. Rodrigues, Jonathan H.P. Dawes, Thomas J. Carney, Karen Camargo Sosa, Artem J. Kasianov, Vseveold Makeev
Neural crest cells (NCCs) are highly multipotent stem cells. A long-standing controversy exists over the mechanism of NCC fate specification, specifically regarding the presence and potency of intermediate progenitors. The direct fate restriction (DF
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a27436d55e7f089ba2e4f85cbac45922
https://doi.org/10.1101/2021.06.17.448805
https://doi.org/10.1101/2021.06.17.448805
Publikováno v:
Buffoni, B, Zimmer, J & Schwetlick, H 2017, ' Travelling waves for a Frenkel-Kontorova chain ', Journal of Differential Equations, vol. 263, no. 4, pp. 2317-2342 . https://doi.org/10.1016/j.jde.2017.03.046
In this article, the Frenkel–Kontorova model for dislocation dynamics is considered, where the on-site potential consists of quadratic wells joined by small arcs, which can be spinodal (concave) as commonly assumed in physics. The existence of hete
Autor:
Andrea Rocco, Hartmut Schwetlick, Robert N. Kelsh, Kleio Petratou, Tatiana Subkhankulova, James A. Lister
Publikováno v:
PLoS Genetics
PLoS Genetics, Vol 14, Iss 10, p e1007402 (2018)
PLoS Genetics, Vol 14, Iss 10, p e1007402 (2018)
Multipotent neural crest (NC) progenitors generate an astonishing array of derivatives, including neuronal, skeletal components and pigment cells (chromatophores), but the molecular mechanisms allowing balanced selection of each fate remain unknown.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8f1ac0687064559cd86afe50c8847b21
https://www.repository.cam.ac.uk/handle/1810/286933
https://www.repository.cam.ac.uk/handle/1810/286933
Publikováno v:
Journal of Elasticity. 119:263-291
In this article, we study the evolution of open inextensible planar curves with hinged ends. We obtain long time existence of \(C^{\infty}\)-smooth solutions during the evolution, given the initial curves that are only \(C^{2}\)-smooth with vanishing
Publikováno v:
Buffoni, B, Schwetlick, H & Zimmer, J 2019, ' Travelling heteroclinic waves in a Frenkel-Kontorova chain with anharmonic on-site potential ', Journal de Mathématiques Pures et Appliquées, vol. 123, pp. 1-40 . https://doi.org/10.1016/j.matpur.2019.01.002
The Frenkel-Kontorova model for dislocation dynamics from 1938 is given by a chain of atoms, where neighbouring atoms interact through a linear spring and are exposed to a smooth periodic on-site potential. A dislocation moving with constant speed co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c7822775748abf3d9fa9baa7fdeecb97
http://arxiv.org/abs/1607.08534
http://arxiv.org/abs/1607.08534
Autor:
Hartmut Schwetlick, Johannes Zimmer
Publikováno v:
Zimmer, J & Schwetlick, H 2016, A convergent string method: Existence and approximation for the Hamiltonian boundary-value problem . in T Hagen, F Rapp & J Scheurle (eds), Dynamical Systems, Number Theory and Applications : A Festschrift in Honor of Armin Leutbecher's 80th Birthday . World Sci. Publ., Hackensack, NJ, pp. 221-254 .
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a0e330b9c83f195e48874339c9f2e932
https://doi.org/10.1142/9789814699877_0012
https://doi.org/10.1142/9789814699877_0012
Publikováno v:
Schwetlick, H, Sutton, D C & Zimmer, J 2012, ' Nonexistence of slow heteroclinic travelling waves for a bistable Hamiltonian lattice model ', Journal of Nonlinear Science, vol. 22, no. 6, pp. 917-934 . https://doi.org/10.1007/s00332-012-9131-8
The nonexistence of heteroclinic travelling waves in an atomistic model for martensitic phase transitions is the focus of this study. The elastic energy is assumed to be piecewise quadratic, with two wells representing two stable phases. We demonstra