Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Harsoula, Mirella"'
Autor:
Contopoulos, George, Harsoula, Mirella
We consider the orbits in the Yang-Mills (YM) potential V=1/2 x2 y2 and in the potentials of the general form Vg=1/2 [{\alpha} (x2 +y2)+x2 y2]. The stable period-9 (number of intersection with the x-axis, with ) orbit found in the YM potential is a b
Externí odkaz:
http://arxiv.org/abs/2302.12071
Publikováno v:
Phys. Rev. E 99, 032203 (2019)
We study and compare three characteristic times of the standard map, the Lyapunov time t_L, the Poincare recurrence time t_r and the stickiness (or escape) time t_{st}. The Lyapunov time is the inverse of the Lyapunov characteristic number LCN and in
Externí odkaz:
http://arxiv.org/abs/1810.11294
Autor:
Harsoula, Mirella, Contopoulos, George
We study the global and the local transport and diffusion in the case of the standard map, by calculating the diffusion exponent $\mu$. In the global case we find that the mean diffusion exponent for the whole phase space is either $\mu=1$, denoting
Externí odkaz:
http://arxiv.org/abs/1807.06320
Autor:
Patsis, Panos, Harsoula, Mirella
Publikováno v:
A&A 612, A114 (2018)
We present and discuss the orbital content of a rather unusual rotating barred galaxy model, in which the three-dimensional (3D) family, bifurcating from x1 at the 2:1 vertical resonance with the known "frown-smile" side-on morphology, is unstable. O
Externí odkaz:
http://arxiv.org/abs/1804.06199
We develop an analytical theory of chaotic spiral arms in galaxies. This is based on the Moser theory of invariant manifolds around unstable periodic orbits. We apply this theory to the chaotic spiral arms, that start from the neighborhood of the Lag
Externí odkaz:
http://arxiv.org/abs/1603.09151
A detailed numerical study is presented of the slow diffusion (Arnold diffusion) taking place around resonance crossings in nearly integrable Hamiltonian systems of three degrees of freedom in the so-called `Nekhoroshev regime'. The aim is to constru
Externí odkaz:
http://arxiv.org/abs/1302.1309
We study the periodic orbits and the escapes in two different dynamical systems, namely (1) a classical system of two coupled oscillators, and (2) the Manko-Novikov metric (1992) which is a perturbation of the Kerr metric (a general relativistic syst
Externí odkaz:
http://arxiv.org/abs/1203.1010
Autor:
Contopoulos, George, Harsoula, Mirella
We study the role of asymptotic curves in supporting the spiral structure of a N-body model simulating a barred spiral galaxy. Chaotic orbits with initial conditions on the unstable asymptotic curves of the main unstable periodic orbits follow the sh
Externí odkaz:
http://arxiv.org/abs/1108.5958
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.