Zobrazeno 1 - 10
of 869
pro vyhledávání: '"Harper, David P."'
We propose a road layout and traffic model, based on last passage percolation (LPP). An easy naive argument shows that coalescence of traffic trajectories is essential to be considered when observing traffic networks around us. This is a fundamental
Externí odkaz:
http://arxiv.org/abs/2403.16268
We consider i.i.d. first-passage percolation (FPP) on the two-dimensional square lattice, in the critical case where edge-weights take the value zero with probability $1/2$. Critical FPP is unique in that the Euclidean lengths of geodesics are superl
Externí odkaz:
http://arxiv.org/abs/2309.04454
We study first-passage percolation (FPP) on the square lattice. The model is defined using i.i.d. nonnegative random edge-weights $(t_e)$ associated to the nearest neighbor edges of $\mathbb{Z}^2$. The passage time between vertices $x$ and $y$, $T(x,
Externí odkaz:
http://arxiv.org/abs/2308.10114
Autor:
Grubb, Cecile A., Keffer, David J., Webb, Christopher D., Kardos, Marton, Mainka, Hendrik, Harper, David P.
Publikováno v:
In Composites Part A October 2024 185
In first-passage percolation (FPP), we let $(\tau_v)$ be i.i.d. nonnegative weights on the vertices of a graph and study the weight of the minimal path between distant vertices. If $F$ is the distribution function of $\tau_v$, there are different reg
Externí odkaz:
http://arxiv.org/abs/2108.13248
Autor:
Zhang, Shuyang, Ji, Anqi, Meng, Xianzhi, Bhagia, Samarthya, Yoo, Chang Geun, Harper, David P., Zhao, Xianhui, Ragauskas, Arthur J.
Publikováno v:
In Composites Science and Technology 12 April 2024 249
Autor:
Zhang, Shuyang, Meng, Xianzhi, Bhagia, Samarthya, Ji, Anqi, Dean Smith, Micholas, Wang, Yun-yan, Liu, Bo, Yoo, Chang Geun, Harper, David P., Ragauskas, Arthur J.
Publikováno v:
In Chemical Engineering Journal 1 February 2024 481
Autor:
Damron, Michael, Harper, David
We study the critical case of first-passage percolation in two dimensions. Letting $(t_e)$ be i.i.d. nonnegative weights assigned to the edges of $\mathbb{Z}^2$ with $\mathbb{P}(t_e=0)=1/2$, consider the induced pseudometric (passage time) $T(x,y)$ f
Externí odkaz:
http://arxiv.org/abs/1912.06714
Autor:
Zhang, Kailong, Sutton, Isaac, Smith, Micholas Dean, Harper, David P., Wang, Siqun, Wu, Tao, Li, Mi
Publikováno v:
In iScience 15 December 2023 26(12)
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.