Zobrazeno 1 - 10
of 146
pro vyhledávání: '"Hari, Vjeran"'
Autor:
Begovic, Erna, Hari, Vjeran
Publikováno v:
Linear Algebra Appl. 699 (2024) 421-458
The paper considers the convergence of the complex block Jacobi diagonalization methods under the large set of the generalized serial pivot strategies. The global convergence of the block methods for Hermitian, normal and $J$-Hermitian matrices is pr
Externí odkaz:
http://arxiv.org/abs/2401.00533
Autor:
Begović Kovač, Erna, Hari, Vjeran
Publikováno v:
In Linear Algebra and Its Applications 15 October 2024 699:421-458
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Hari, Vjeran, Begovic, Erna
Publikováno v:
Linear Multilinear Algebra 69(3) (2021) 489--514
In this paper we prove the global convergence of the complex Jacobi method for Hermitian matrices for a large class of generalized serial pivot strategies. For a given Hermitian matrix $A$ of order $n$ we find a constant $\gamma<1$ depending on $n$,
Externí odkaz:
http://arxiv.org/abs/1810.12720
Autor:
Matejaš, Josip, Hari, Vjeran
Publikováno v:
In Applied Mathematics and Computation 15 November 2022 433
Autor:
Hari, Vjeran
Publikováno v:
In Linear Algebra and Its Applications 1 January 2022 632:153-192
Autor:
Begovic, Erna, Hari, Vjeran
Publikováno v:
Linear Algebra Appl. 524 (2017) 199--234
The paper analyzes special cyclic Jacobi methods for symmetric matrices of order $4$. Only those cyclic pivot strategies that enable full parallelization of the method are considered. These strategies, unlike the serial pivot strategies, can force th
Externí odkaz:
http://arxiv.org/abs/1701.02334
Autor:
Begovic, Erna, Hari, Vjeran
Publikováno v:
Numer. Algor. 78(3) (2018) 701--720
The paper studies the global convergence of the Jacobi method for symmetric matrices of size $4$. We prove global convergence for all $720$ cyclic pivot strategies. Precisely, we show that inequality $S(A^{[t+3]})\leq\gamma S(A^{[t]})$, $t\geq1$, hol
Externí odkaz:
http://arxiv.org/abs/1701.02387
Autor:
Hari, Vjeran, Begovic, Erna
Publikováno v:
Electron. Trans. Numer. Anal. 46 (2017) 107--147
The paper studies the global convergence of the block Jacobi me\-thod for symmetric matrices. Given a symmetric matrix $A$ of order $n$, the method generates a sequence of matrices by the rule $A^{(k+1)}=U_k^TA^{(k)}U_k$, $k\geq0$, where $U_k$ are or
Externí odkaz:
http://arxiv.org/abs/1604.05825
Autor:
Hari, Vjeran1 (AUTHOR) hari@math.hr
Publikováno v:
Calcolo. Jun2021, Vol. 58 Issue 2, p1-39. 39p.