Zobrazeno 1 - 10
of 338
pro vyhledávání: '"Hardy spaces associated to operators"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Let $X$ be a space of homogeneous type. Assume that $L$ is an non-negative second-order self-adjoint operator on $L^2\left(X\right)$ with (heart) kernel associated to the semigroup $e^{ - tL}$ that satisfies the Gaussian upper bound. In this paper, t
Externí odkaz:
http://arxiv.org/abs/1903.08393
Let $L$ be the generator of an analytic semigroup whose kernels satisfy Gaussian upper bounds and H\"older's continuity. Also assume that $L$ has a bounded holomorphic functional calculus on $L^2(\mathbb{R}^n)$. In this paper, we construct a frame de
Externí odkaz:
http://arxiv.org/abs/1903.01705
Publikováno v:
Проблемы анализа, Vol 11 (29), Iss 3, Pp 66-90 (2022)
We introduce the weighted variable Hardy space 𝐻(^𝑝(·) _𝐿,𝑤) (ℝ^𝑛) associated with the operator 𝐿, which has a bounded holomorphic functional calculus and fulfills the Davies-Gaffney estimates. More precisely, we establish the mo
Externí odkaz:
https://doaj.org/article/6e47748784c944bc952df960227a887a
Let $L_{1}$ and $L_{2}$ be non-negative self-adjoint operators acting on $L^{2}(X_{1})$ and $L^{2}(X_{2})$, respectively, where $X_{1}$ and $X_{2}$ are spaces of homogeneous type. Assume that $L_{1}$ and $L_{2}$ have Gaussian heat kernel bounds. This
Externí odkaz:
http://arxiv.org/abs/1706.05803
Let $L$ be a one-to-one operator of type $\omega$ in $L^2(\mathbb{R}^n)$, with $\omega\in[0,\,\pi/2)$, which has a bounded holomorphic functional calculus and satisfies the Davies-Gaffney estimates. Let $p(\cdot):\ \mathbb{R}^n\to(0,\,1]$ be a variab
Externí odkaz:
http://arxiv.org/abs/1601.06358
The aim of this article is to develop the theory of product Hardy spaces associated with operators which possess the weak assumption of Davies--Gaffney heat kernel estimates, in the setting of spaces of homogeneous type. We also establish a Calder\'o
Externí odkaz:
http://arxiv.org/abs/1510.02559
Autor:
Yang, Dachun, Zhuo, Ciqiang
Let $L$ be a linear operator on $L^2(\mathbb R^n)$ generating an analytic semigroup $\{e^{-tL}\}_{t\ge0}$ with kernels having pointwise upper bounds and $p(\cdot):\ \mathbb R^n\to(0,1]$ be a variable exponent function satisfying the globally log-H\"o
Externí odkaz:
http://arxiv.org/abs/1512.05950
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Analysis and Geometry in Metric Spaces, volume 1 (2012), 69-129
Let $\mathcal{X}$ be a metric space with doubling measure and $L$ a one-to-one operator of type $\omega$ having a bounded $H_\infty$-functional calculus in $L^2(\mathcal{X})$ satisfying the reinforced $(p_L, q_L)$ off-diagonal estimates on balls, whe
Externí odkaz:
http://arxiv.org/abs/1303.0057