Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Hardt, Andrew"'
We use a double shifted power analog of free fermion fields to introduce current operators, Hamiltonians, and vertex operators which are deformed by two families of parameters and satisfy analogous formulas to the classical case. We show that the def
Externí odkaz:
http://arxiv.org/abs/2410.06582
Autor:
Addona, Patrick, Bockenhauer, Ethan, Brubaker, Ben, Cauthorn, Michael, Conefrey-Shinozaki, Cianan, Donze, David, Dudarov, William, Dukes, Jessamyn, Hardt, Andrew, Li, Cindy, Li, Jigang, Liu, Yanli, Puthanveetil, Neelima, Qudsi, Zain, Simons, Jordan, Sullivan, Joseph, Young, Autumn
Given an arbitrary choice of two sets of nonzero Boltzmann weights for $n$-color lattice models, we provide explicit algebraic conditions on these Boltzmann weights which guarantee a solution (i.e., a third set of weights) to the Yang-Baxter equation
Externí odkaz:
http://arxiv.org/abs/2212.06404
Autor:
Hardt, Andrew
We give general conditions for the existence of a Hamiltonian operator whose discrete time evolution matches the partition function of certain solvable lattice models. In particular, we examine two classes of lattice models: the classical six-vertex
Externí odkaz:
http://arxiv.org/abs/2109.14597
We introduce families of two-parameter multivariate polynomials indexed by pairs of partitions $v,w$ -- biaxial double $(\beta,q)$-Grothendieck polynomials -- which specialize at $q=0$ and $v=1$ to double $\beta$-Grothendieck polynomials from torus-e
Externí odkaz:
http://arxiv.org/abs/2007.04310
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.