Zobrazeno 1 - 10
of 89
pro vyhledávání: '"Hardesty, William"'
Autor:
Achar, Pramod N., Hardesty, William
Let $G$ be a connected reductive group over an algebraically closed field $\Bbbk$. Under mild restrictions on the characteristic of $\Bbbk$, we show that any $G$-module with a good filtration also has a good filtration as a module for the reductive p
Externí odkaz:
http://arxiv.org/abs/2106.04374
Autor:
Achar, Pramod N., Hardesty, William
Let $G$ be a connected reductive algebraic group over an algebraically closed field $\Bbbk$ of characteristic $p \ge 0$, and let $\mathcal{N}$ be its nilpotent cone. Under mild hypotheses, we construct for each nilpotent $G$-orbit $C$ and each indeco
Externí odkaz:
http://arxiv.org/abs/2106.04268
Autor:
Achar, Pramod N., Hardesty, William
We construct a co-$t$-structure on the derived category of coherent sheaves on the nilpotent cone $\mathcal{N}$ of a reductive group, as well as on the derived category of coherent sheaves on any parabolic Springer resolution. These structures are em
Externí odkaz:
http://arxiv.org/abs/2012.06098
Autor:
Achar, Pramod N.1 (AUTHOR), Hardesty, William2 (AUTHOR)
Publikováno v:
Representation Theory. 2/2/2024, Vol. 28, p49-89. 41p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
For quantum groups at a root of unity, there is a web of theorems (due to Bezrukavnikov and Ostrik, and relying on work of Lusztig) connecting the following topics: (i) tilting modules; (ii) vector bundles on nilpotent orbits; and (iii) Kazhdan-Luszt
Externí odkaz:
http://arxiv.org/abs/1812.09960
Let G be a reductive group over an algebraically closed field k of very good characteristic. The Lusztig-Vogan bijection is a bijection between the set of dominant weights for G and the set of irreducible G-equivariant vector bundles on nilpotent orb
Externí odkaz:
http://arxiv.org/abs/1810.08897
Autor:
Hardesty, William
Let $G$ be a split reductive algebraic group defined over a complete discrete valuation ring $\mathbb{O}$, with residue field $\mathbb{F}$ and fraction field $\mathbb{K}$, where the fiber $G_{\mathbb{F}}$ is geometrically standard. A balanced nilpote
Externí odkaz:
http://arxiv.org/abs/1810.06157
Autor:
Achar, Pramod N., Hardesty, William D.
In this paper, we carry out several computations involving graded (or $\mathbb{G}_{\mathrm{m}}$-equivariant) perverse-coherent sheaves on the nilpotent cone of a reductive group in good characteristic. In the first part of the paper, we compute the w
Externí odkaz:
http://arxiv.org/abs/1806.07780
Autor:
Hardesty, William
Let $G= SL_{n+1}$ be defined over an algebraically closed field of characteristic $p > 2$. For each $n \geq 1$ there exists a singular block in the category of $G_1$-modules which contains precisely $n+1$ irreducible modules. We are interested in the
Externí odkaz:
http://arxiv.org/abs/1805.04614