Zobrazeno 1 - 10
of 94
pro vyhledávání: '"Hao, Chengchun"'
This paper is mainly concerned with the free boundary problem for an approximate model (for example, arising from the study of sonoluminescence) of a gas bubble of finite mass enclosed within a bounded incompressible viscous liquid, accounting for su
Externí odkaz:
http://arxiv.org/abs/2408.15587
This paper aims to establish the global well-posedness of the free boundary problem for the incompressible viscous resistive magnetohydrodynamic (MHD) equations. Under the framework of Lagrangian coordinates, a unique global solution exists in the ha
Externí odkaz:
http://arxiv.org/abs/2408.15279
Autor:
Hao, Chengchun, Yang, Siqi
We develop the local regularity theory for the three-dimensional free boundary incompressible ideal magnetohydrodynamics (MHD) equations with surface tension and study the relationship between the geometry of the free boundary and the regularity loss
Externí odkaz:
http://arxiv.org/abs/2312.09473
Autor:
Hao, Chengchun, Yang, Siqi
Publikováno v:
Journal of Differential Equations 379, 26-103, 2024
In this paper, we prove the existence of smooth initial data for the two-dimensional free boundary incompressible viscous magnetohydrodynamics (MHD) equations, for which the interface remains regular but collapses into a splash singularity (self-inte
Externí odkaz:
http://arxiv.org/abs/2304.06893
Autor:
Hao, Chengchun, Yang, Siqi
Publikováno v:
In Journal of Differential Equations 15 January 2024 379:26-103
Autor:
Hao, Chengchun, Luo, Tao
Publikováno v:
J. Differential Equations, 299, 542-601, 2021
We study the well-posedness theory for the linearized free boundary problem of incompressible ideal magnetohydrodynamics equations in a bounded domain. We express the magnetic field in terms of the velocity field and the deformation tensors in the La
Externí odkaz:
http://arxiv.org/abs/1912.05908
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Hao, Chengchun, Luo, Tao
Publikováno v:
Commun. Math. Phys. 376(1), 259-286, 2020
In the present paper, we show the ill-posedness of the free boundary problem of the incompressible ideal magnetohydrodynamics (MHD) equations in two spatial dimensions for any positive vacuum permeability $\mu_0$, in Sobolev spaces. The analysis is u
Externí odkaz:
http://arxiv.org/abs/1810.07465
Autor:
Hao, Chengchun, Zhang, Wei
Publikováno v:
In Journal of Differential Equations 15 June 2022 322:101-134
Autor:
Hao, Chengchun, Luo, Tao
Publikováno v:
In Journal of Differential Equations 25 October 2021 299:542-601