Zobrazeno 1 - 10
of 94
pro vyhledávání: '"Hanusch, Maximilian"'
Autor:
Hanusch, Maximilian
Publikováno v:
Ann. Glob. Anal. Geom., vol. 63 (2023), no. 21
We investigate the Lax equation in the context of infinite-dimensional Lie algebras. Explicit solutions are discussed in the sequentially complete asymptotic estimate context, and an integral expansion (sums of iterated Riemann integrals over nested
Externí odkaz:
http://arxiv.org/abs/2006.04145
Autor:
Hanusch, Maximilian
Publikováno v:
Can. J. Math., vol. 75 (2023), issue 1, pp. 170-201
We generalize a classical extension result by Seeley in the context of Bastiani's differential calculus to infinite dimensions. The construction follows Seeley's original approach, but is significantly more involved as not only $C^k$-maps (for $k\in
Externí odkaz:
http://arxiv.org/abs/2002.05125
Autor:
Hanusch, Maximilian
Publikováno v:
In Indagationes Mathematicae July 2023 34(4):752-811
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Hanusch, Maximilian
Publikováno v:
Forum Math. (2019), Vol. 31, Issue 5. Pages 1139-1177
We solve the differentiability problem for the evolution map in Milnor's infinite dimensional setting. We first show that the evolution map of each $C^k$-semiregular Lie group $G$ (for $k\in \mathbb{N}\sqcup\{\mathrm{lip},\infty\}$) admits a particul
Externí odkaz:
http://arxiv.org/abs/1812.08777
Autor:
Hanusch, Maximilian
Publikováno v:
Indag. Math. (2020), Vol. 31, Issue 1, Pages 152-176
We solve the regularity problem for Milnor's infinite dimensional Lie groups in the asymptotic estimate context. Specifically, let $G$ be a Lie group with asymptotic estimate Lie algebra $\mathfrak{g}$, and denote its evolution map by $\mathrm{evol}\
Externí odkaz:
http://arxiv.org/abs/1804.10956
Autor:
Hanusch, Maximilian
Publikováno v:
J. Lie Theory (2020), Vol. 30, No. 1, 025-032
We show that an infinite dimensional Lie group in Milnor's sense has the strong Trotter property if it is locally $\mu$-convex. This is a continuity condition imposed on the Lie group multiplication that generalizes the triangle inequality for locall
Externí odkaz:
http://arxiv.org/abs/1802.08923
Autor:
Hanusch, Maximilian
Publikováno v:
Commun. Anal. Geom. (2022), Volume 30, Issue 1. Pages 53-152
We solve the regularity problem for Milnor's infinite dimensional Lie groups in the $C^0$-topological context, and provide necessary and sufficient regularity conditions for the (standard) $C^k$-topological setting. We prove that the evolution map is
Externí odkaz:
http://arxiv.org/abs/1711.03508
Publikováno v:
Taxon, 2020 Dec 01. 69(6), 1150-1171.
Externí odkaz:
https://www.jstor.org/stable/27016731
Publikováno v:
Commun. Math. Phys. 354, 231-246 (2017)
We show that the standard representation of homogeneous isotropic loop quantum cosmology (LQC) is the GNS-representation that corresponds to the unique state on the reduced quantum holonomy-flux $^*$-algebra that is invariant under residual diffeomor
Externí odkaz:
http://arxiv.org/abs/1609.03548