Zobrazeno 1 - 10
of 514
pro vyhledávání: '"Hanson, Bruce"'
Autor:
Pepper, Sarah E., Baker, Alastair, Maher, Chris J., Carrott, Mike J., Turner, Joshua, Hanson, Bruce C.
Publikováno v:
In Progress in Nuclear Energy April 2024 169
In this paper we give an example of a closed, strongly one-sided dense set which is not of uniform density type. We also show that there is a set of uniform density type which is not of strong uniform density type.
Comment: Revised version after
Comment: Revised version after
Externí odkaz:
http://arxiv.org/abs/2101.09471
Publikováno v:
In Progress in Nuclear Energy February 2024 167
Autor:
Hanson, Bruce
We characterize the subsets $E \subset \mathbb{R}$ for which there exists a continuous real valued function $f: \mathbb{R}\to\mathbb{R}$ such that lip $f$ is finite everywhere and Lip $f$ is infinite exactly on $E$.
Externí odkaz:
http://arxiv.org/abs/2007.13276
We denote the local ``little" Lipschitz constant of a function $f: {{\mathbb R}}\to { {\mathbb R}}$ by $ {\mathrm{lip}}f$. In this paper we settle the following question: For which sets $E {\subset} { {\mathbb R}}$ is it possible to find a continuous
Externí odkaz:
http://arxiv.org/abs/2001.05261
Publikováno v:
In Progress in Nuclear Energy October 2023 164
Given a continuous function $f: {{\mathbb R}}\to {{\mathbb R}}$ we denote the so-called "big Lip" and "little lip" functions by $ {{\mathrm {Lip}}} f$ and $ {{\mathrm {lip}}} f$ respectively}. In this paper we are interested in the following question
Externí odkaz:
http://arxiv.org/abs/1905.11081
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Suppose $\Lambda$ is a discrete infinite set of nonnegative real numbers. We say that $ {\Lambda}$ is type $1$ if the series $s(x)=\sum_{\lambda\in\Lambda}f(x+\lambda)$ satisfies a zero-one law. This means that for any non-negative measurable $f: {{\
Externí odkaz:
http://arxiv.org/abs/1805.12419