Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Hansen, Niels Dalum"'
Autor:
Hansen, Niels Dalum
For a long time, public health events, such as disease incidence or vaccination activity, have been monitored to keep track of the health status of the population, allowing to evaluate the effect of public health initiatives and to decide where resou
Externí odkaz:
http://arxiv.org/abs/1905.00829
Consumption of antimicrobial drugs, such as antibiotics, is linked with antimicrobial resistance. Surveillance of antimicrobial drug consumption is therefore an important element in dealing with antimicrobial resistance. Many countries lack sufficien
Externí odkaz:
http://arxiv.org/abs/1803.03532
Influenza-like illness (ILI) estimation from web search data is an important web analytics task. The basic idea is to use the frequencies of queries in web search logs that are correlated with past ILI activity as features when estimating current ILI
Externí odkaz:
http://arxiv.org/abs/1802.06833
Autor:
Lioma, Christina, Hansen, Niels Dalum
Compositionality in language refers to how much the meaning of some phrase can be decomposed into the meaning of its constituents and the way these constituents are combined. Based on the premise that substitution by synonyms is meaning-preserving, c
Externí odkaz:
http://arxiv.org/abs/1703.03640
Estimating vaccination uptake is an integral part of ensuring public health. It was recently shown that vaccination uptake can be estimated automatically from web data, instead of slowly collected clinical records or population surveys. All prior wor
Externí odkaz:
http://arxiv.org/abs/1702.07326
We present a method that uses ensemble learning to combine clinical and web-mined time-series data in order to predict future vaccination uptake. The clinical data is official vaccination registries, and the web data is query frequencies collected fr
Externí odkaz:
http://arxiv.org/abs/1609.00689
Modelling term dependence in IR aims to identify co-occurring terms that are too heavily dependent on each other to be treated as a bag of words, and to adapt the indexing and ranking accordingly. Dependent terms are predominantly identified using le
Externí odkaz:
http://arxiv.org/abs/1507.08198
Publikováno v:
PLoS ONE. 9/9/2016, Vol. 11 Issue 9, p1-12. 12p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.