Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Hans-Gerd Leopold"'
We study nuclear embeddings for spaces of Besov and Triebel-Lizorkin type defined on quasi-bounded domains $\Omega\subset {\mathbb R}^d$. The counterpart for such function spaces defined on bounded domains has been considered for a long time and the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e44a472fba83c67dae52325e7e9f6798
Autor:
Walter Farkas, Hans-Gerd Leopold
We investigate function spaces of generalised smoothness of Besov and Triebel–Lizorkin type. Equivalent quasi-norms in terms of maximal functions and local means are given. An atomic decomposition theorem for this type of spaces is proved.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::03658ca9f8d59f47ff0ee7460b024fdb
http://doc.rero.ch/record/316601/files/10231_2004_Article_110.pdf
http://doc.rero.ch/record/316601/files/10231_2004_Article_110.pdf
Autor:
Hans-Gerd Leopold, Leszek Skrzypczak
Publikováno v:
Journal of Mathematical Analysis and Applications. 429:439-460
We prove the asymptotic behaviour of eigenvalues of elliptic self-adjoint differential operators defined on a wide class of quasi-bounded domains. The estimates are based on corresponding asymptotic behaviour of entropy numbers of Sobolev embeddings
Autor:
Hans-Gerd Leopold
Publikováno v:
Was wäre die Mathematik ohne die Wurzel? ISBN: 9783658147587
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b4f89c3a3572cbecaa710d29c27c2bcc
https://doi.org/10.1007/978-3-658-14759-4_8
https://doi.org/10.1007/978-3-658-14759-4_8
Autor:
Leszek Skrzypczak, Hans-Gerd Leopold
Publikováno v:
Proceedings of the Edinburgh Mathematical Society. 56:829-851
We prove sufficient and necessary conditions for compactness of the Sobolev embeddings of Besov and Triebel–Lizorkin spaces defined on bounded and unbounded uniformly E-porous domains. The asymptotic behaviour of the corresponding entropy numbers i
Autor:
Hans-Gerd Leopold, António M. Caetano
Publikováno v:
Journal of Functional Analysis. 264:2676-2703
We establish conditions on the parameters which are both necessary and sufficient in order that Besov and Triebel–Lizorkin spaces of generalized smoothness contain only regular distributions. We also connect this with the possibility of embedding s
Autor:
Hans-Gerd Leopold, Leszek Skrzypczak
Publikováno v:
Journal of Approximation Theory. 163(4):505-523
We investigate compactness and asymptotic behaviour of the entropy numbers of embeddings B"p"""1","q"""1^s^"^1^,^s^"^1^^^'(R^n,U)@?B"p"""2","q"""2^s^"^2^,^s^"^2^^^'(R^n,U). Here B"p","q^s^,^s^'(R^n,U) denotes a 2-microlocal Besov space with a weight
Autor:
António M. Caetano, Hans-Gerd Leopold
Publikováno v:
Journal of Fourier Analysis and Applications. 12:427-445
The concept of local growth envelope $({\cal E}_{LG}A, u)$ of the quasi-normed function space $A$ is applied to the Triebel-Lizorkin spaces of generalized smoothness $F^{\sigma,N}_{p,q} ({\Bbb R}^n).$ In order to achieve this, a standardization resul
Publikováno v:
Mathematische Zeitschrift. 255:1-15
We determine the exact asymptotic order of the entropy numbers of compact embeddings $$B^{s_1}_{p_1 , q_1}(\mathbb{R}^{d},w_1)\hookrightarrow B^{s_2}_{p_2 , q_2}(\mathbb{R}^{d},w_2)$$ of weighted Besov spaces in the case where the ratio of the weight
Publikováno v:
Proceedings of the Edinburgh Mathematical Society. 49:331-359
We investigate the asymptotic behaviour of the entropy numbers of the compact embedding $B^{s_1}_{p_1,q_1}(\mathbb{R}^d,w_1)\hookrightarrow B^{s_2}_{p_2,q_2}(\mathbb{R}^d,w_2)$. Here $B^s_{p,q}(\mathbb{R}^d,w)$ denotes a weighted Besov space. We pres