Zobrazeno 1 - 10
of 243
pro vyhledávání: '"Hanot, P."'
In this work we address the problem of finding serendipity versions of approximate de Rham complexes with enhanced regularity. The starting point is a new abstract construction of general scope which, given three complexes linked by extension and red
Externí odkaz:
http://arxiv.org/abs/2407.12625
We design in this work a discrete de Rham complex on manifolds. This complex, written in the framework of exterior calculus, is applicable on meshes on the manifold with generic elements, and has the same cohomology as the continuous de Rham complex.
Externí odkaz:
http://arxiv.org/abs/2401.16130
In this paper we prove Poincar\'e inequalities for the Discrete de Rham (DDR) sequence on a general connected polyhedral domain $\Omega$ of $\mathbb{R}^3$. We unify the ideas behind the inequalities for all three operators in the sequence, deriving n
Externí odkaz:
http://arxiv.org/abs/2309.15667
In this work, following the Discrete de Rham (DDR) paradigm, we develop an arbitrary-order discrete divdiv complex on general polyhedral meshes. The construction rests 1) on discrete spaces that are spanned by vectors of polynomials whose components
Externí odkaz:
http://arxiv.org/abs/2305.05729
Autor:
Marie Hanot, Marine Duplantier, Céline Dalle, Yani Ren, Sophie Da Nascimento, Jean-Paul Becker, Nicolas Taudon, Elodie Lohou, Pascal Sonnet
Publikováno v:
Drugs and Drug Candidates, Vol 3, Iss 3, Pp 512-536 (2024)
Antibiotic resistance is a critical public health issue. Among the multi-drug resistant microorganisms in question, Pseudomonas aeruginosa has been designated by the WHO as a priority threat. Its virulence is orchestrated through quorum sensing (QS).
Externí odkaz:
https://doaj.org/article/d8b2148a39ea41a1931499b4b494f3a8
Publikováno v:
Results in Applied Mathematics, Vol 23, Iss , Pp 100496- (2024)
In this paper we prove Poincaré inequalities for the Discrete de Rham (DDR) sequence on a general connected polyhedral domain Ω of R3. We unify the ideas behind the inequalities for all three operators in the sequence, deriving new proofs for the P
Externí odkaz:
https://doaj.org/article/0119a9f39d0443d8a5bd781a8e1eba43
Autor:
Azerad, Pascal, Hanot, Marien-Lorenzo
We are interested in the numerical reconstruction of a vector field with prescribed divergence and curl in a general domain of R 3 or R 2 , not necessarily contractible. To this aim, we introduce some basic concepts of finite element exterieur calcul
Externí odkaz:
http://arxiv.org/abs/2201.06800
Autor:
Hanot, Marien-Lorenzo
In this paper we present an arbitrary-order fully discrete Stokes complex on general polyhedral meshes. We enriche the fully discrete de Rham complex with the addition of a full gradient operator defined on vector fields and fitting into the complex.
Externí odkaz:
http://arxiv.org/abs/2112.03125
Autor:
Hanot, M.
In this paper we discretize the incompressible Navier-Stokes equations in the framework of finite element exterior calculus. We make use of the Lamb identity to rewrite the equations into a vorticity-velocity-pressure form which fits into the de Rham
Externí odkaz:
http://arxiv.org/abs/2106.05146
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.