Zobrazeno 1 - 10
of 49
pro vyhledávání: '"Handy, Carlos"'
Autor:
Handy, Carlos R.
The transformation of a classical system into its quantum counterpart is usually done through the well known procedure of canonical quantization. However, on non-Cartesian domains, or on bounded Cartesian domains, this procedure can be plagued with t
Externí odkaz:
http://arxiv.org/abs/2111.10700
Autor:
Handy, Carlos R., Klauder, John
Normally, the half-harmonic oscillator is active when $x>0$ and absent when $x<0$. From a canonical quantization perspective, this leads to odd eigenfunctions being present while even eigenfunctions are absent. In that case, only the usual odd eigenf
Externí odkaz:
http://arxiv.org/abs/2108.00289
Autor:
Handy, Carlos R.
Publikováno v:
2021 Phys. Scr. 96 075201
Although the Christoffel-Darboux representation (CDR) plays an important role within the theory of orthogonal polynomials, and many important bosonic and fermionic multidimensional Schrodinger equation systems can be transformed into a moment equatio
Externí odkaz:
http://arxiv.org/abs/2012.12303
Autor:
Handy, Carlos R.
For low dimension systems admitting a moment equation representation (MER), the development of an effective eigenenergy bounding theory applicable to all discrete states had remained elusive, until now. Whereas Handy et al (1988 Phys. Rev. Lett. 60 2
Externí odkaz:
http://arxiv.org/abs/2011.15011
Many quantum systems admit an explicit analytic Fourier space expansion, besides the usual analytic Schrodinger configuration space representation. We argue that the use of weighted orthonormal polynomial expansions for the physical states (generated
Externí odkaz:
http://arxiv.org/abs/1411.5109
There continues to be great interest in understanding quasi-exactly solvable (QES) systems. In one dimension, QES states assume the form $\Psi(x) =x^\gamma P_d(x) {\cal A}(x)$, where ${\cal A}(x) > 0$ is known in closed form, and $P_d(x)$ is a polyno
Externí odkaz:
http://arxiv.org/abs/1402.5868
Moment based methods have produced efficient multiscale quantization algorithms for solving singular perturbation/strong coupling problems. One of these, the Eigenvalue Moment Method (EMM), developed by Handy et al (Phys. Rev. Lett.{\bf 55}, 931 (198
Externí odkaz:
http://arxiv.org/abs/math-ph/0105020
The uniqueness of a surface density of sources localized inside a spatial region $R$ and producing a given electric potential distribution in its boundary $B_0$ is revisited. The situation in which $R$ is filled with various metallic subregions, each
Externí odkaz:
http://arxiv.org/abs/physics/0003048
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Handy, Carlos R.1, Vrinceanu, Daniel1
Publikováno v:
Canadian Journal of Physics. Apr2016, Vol. 94 Issue 4, p410-424. 15p. 5 Charts.