Zobrazeno 1 - 10
of 233
pro vyhledávání: '"Handy, C"'
Autor:
Handy, C. R.
There has been renewed interest in the exploitation of Barta's configuration space theorem (BCST, (1937)) which bounds the ground state energy. Mouchet's (2005) BCST analysis is based on gradient optimization (GO). However, it overlooks significant d
Externí odkaz:
http://arxiv.org/abs/math-ph/0510071
Autor:
Handy, C. R.
The recent Letter by Bender, Berry, and Mandilara (2002, BBM) presents some interesting symmetry arguments which enable one to transform non-hermitian, PT invariant, (complex) polynomial potential hamiltonians, into secular equation representations w
Externí odkaz:
http://arxiv.org/abs/math-ph/0208021
Autor:
Handy, C. R., Wang, Xiao Qian
We show that a recently developed method for generating bounds for the discrete energy states of the non-hermitian $-ix^3$ potential (Handy 2001) is applicable to complex rotated versions of the Hamiltonian. This has important implications for extens
Externí odkaz:
http://arxiv.org/abs/math-ph/0105019
Autor:
Handy, C. R.
The Eigenvalue Moment Method (EMM), Handy (2001), Handy and Wang (2001)) is applied to the $H_\alpha \equiv P^2 + iX^3 + i\alpha X$ Hamiltonian, enabling the algebraic/numerical generation of converging bounds to the complex energies of the $L^2$ sta
Externí odkaz:
http://arxiv.org/abs/math-ph/0104036
The recent work of Delabaere and Trinh (2000 J. Phys. A 33 8771) discovered the existence of ${\cal P}{\cal T}$-symmetry breaking, complex energy, $L^2$ solutions for the one dimensional Hamiltonian, $P^2+iX^3+i\alpha X$, in the asymptotic limit, $\a
Externí odkaz:
http://arxiv.org/abs/math-ph/0104037
Autor:
Handy, C. R.
Recent investigations by Bender and Boettcher (Phys. Rev. Lett 80, 5243 (1998)) and Mezincescu (J. Phys. A. 33, 4911 (2000)) have argued that the discrete spectrum of the non-hermitian potential $V(x) = -ix^3$ should be real. We give further evidence
Externí odkaz:
http://arxiv.org/abs/math-ph/0104035
We devise a new and highly accurate quantization procedure for the inner product representation, both in configuration and momentum space. Utilizing the representation $\Psi(\xi) = \sum_{i}a_i[E]\xi^i R_{\beta}(\xi)$, for an appropriate reference fun
Externí odkaz:
http://arxiv.org/abs/quant-ph/9707005
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Handy, C. R., Padberg, D. I.
Publikováno v:
American Journal of Agricultural Economics, 1971 May 01. 53(2), 182-190.
Externí odkaz:
https://www.jstor.org/stable/1237430
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.