Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Hancharuk, Aliaksandr"'
Given a commutative algebra $\mathcal O$, a proper ideal $\mathcal I$, and a resolution of $\mathcal O/ \mathcal I$ by projective $\mathcal O $-modules, we construct an explicit Koszul-Tate resolution. We call it the arborescent Koszul-Tate resolutio
Externí odkaz:
http://arxiv.org/abs/2406.03955
Autor:
Hancharuk, Aliaksandr, Strobl, Thomas
We consider mechanical systems on $T^*M$ with possibly irregular and reducible first class contraints linear in the momenta, which thus correspond to singular foliations on $M$. According to a recent result, the latter ones have a Lie-infinity algebr
Externí odkaz:
http://arxiv.org/abs/2104.12257
We study conformal higher spin (CHS) fields on constant curvature backgrounds. By employing parent formulation technique in combination with tractor description of GJMS operators we find a manifestly factorized form of the CHS wave operators for symm
Externí odkaz:
http://arxiv.org/abs/1808.04320
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Hancharuk, Aliaksandr, Strobl, Thomas
We study mechanical models with first class constraints, not restricting to only regular and irreducible ones. We show that while the BFV charge always exists, the BFV extension of the Hamiltonian may be obstructed. Somewhat astonishingly this happen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::988e8b582949a00cd797ae0ee542a78e
https://hal.archives-ouvertes.fr/hal-03224702
https://hal.archives-ouvertes.fr/hal-03224702