Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Hanaa M. Zayed"'
Autor:
Teodor Bulboacă, Hanaa M. Zayed
Publikováno v:
Journal of Inequalities and Applications, Vol 2024, Iss 1, Pp 1-17 (2024)
Abstract In continuation of Zayed and Bulboacă work in (J. Inequal. Appl. 2022:158, 2022), this paper discusses the geometric characterization of the normalized form of the generalized Bessel function defined by V ρ , r ( z ) : = z + ∑ k = 1 ∞
Externí odkaz:
https://doaj.org/article/f0ad9c2cfa854276a64b725103db783f
Autor:
Hanaa M. Zayed, Teodor Bulboacă
Publikováno v:
Journal of Inequalities and Applications, Vol 2024, Iss 1, Pp 1-27 (2024)
Abstract The present investigation aims to examine the geometric properties of the normalized form of the combination of generalized Lommel–Wright function J λ , μ ν , m ( z ) : = Γ m ( λ + 1 ) Γ ( λ + μ + 1 ) 2 2 λ + μ z 1 − ( ν / 2 )
Externí odkaz:
https://doaj.org/article/bce971e4becc4a80a2007ae7179c2024
Autor:
Hanaa M. Zayed, Teodor Bulboacă
Publikováno v:
Journal of Inequalities and Applications, Vol 2022, Iss 1, Pp 1-26 (2022)
Abstract The normalization of the generalized Bessel functions U σ , r $\mathrm{U}_{\sigma,r}$ ( σ , r ∈ C ) $(\sigma,r\in \mathbb{C}\mathbbm{)}$ defined by U σ , r ( z ) = z + ∑ j = 1 ∞ ( − r ) j 4 j ( 1 ) j ( σ ) j z j + 1 $$\begin{alig
Externí odkaz:
https://doaj.org/article/d6cd411551454e278536238ae3192fb8
Autor:
Hanaa M. Zayed, Khaled Mehrez
Publikováno v:
Journal of Inequalities and Applications, Vol 2022, Iss 1, Pp 1-24 (2022)
Abstract The normalization of the combination of generalized Lommel–Wright function J κ 1 , κ 2 κ 3 , m ( z ) $\mathfrak{J}_{\kappa _{1},\kappa _{2}}^{\kappa _{3},m}(z)$ ( m ∈ N , κ 3 > 0 $\kappa _{3}>0$ and κ 1 , κ 2 ∈ C ) defined by J
Externí odkaz:
https://doaj.org/article/70be28b5e80b4d4b8676a5e5e099ec55
Autor:
Hanaa M. Zayed, Teodor Bulboacă
Publikováno v:
Journal of Inequalities and Applications, Vol 2021, Iss 1, Pp 1-19 (2021)
Abstract The scope of our investigation is to study the geometric properties of the normalized form of the combination of generalized Lommel–Wright function J ν , λ μ , m $J_{\nu ,\lambda }^{\mu ,m}$ defined by J ν , λ μ , m ( z ) : = Γ m (
Externí odkaz:
https://doaj.org/article/bb80c77c2e484ac7a6444a4cf794086f
Autor:
Hanaa M. Zayed
Publikováno v:
Advances in Difference Equations, Vol 2021, Iss 1, Pp 1-16 (2021)
Abstract An approach to the generalized Bessel–Maitland function is proposed in the present paper. It is denoted by J ν , λ μ $\mathcal{J}_{\nu , \lambda }^{\mu }$ , where μ > 0 $\mu >0$ and λ , ν ∈ C $\lambda ,\nu \in \mathbb{C\ }$ get inc
Externí odkaz:
https://doaj.org/article/3a6e23900c4d440c9e6ed2aaffcce491
Autor:
Hanaa M. Zayed, Teodor Bulboacă
Publikováno v:
Journal of Inequalities and Applications, Vol 2019, Iss 1, Pp 1-13 (2019)
Abstract Using the third-order differential subordination basic results, we introduce certain classes of admissible functions and investigate some applications of third-order differential subordination for p-valent functions associated with generaliz
Externí odkaz:
https://doaj.org/article/9f77fc8025bd44ccb34353fe5c4517c2
Autor:
Hanaa M. Zayed
Publikováno v:
Journal of the Egyptian Mathematical Society, Vol 27, Iss 1, Pp 1-14 (2019)
Abstract The main object of this paper is to investigate some subordination results of certain subclasses of multivalent analytic functions which are defined by a generalized fractional differintegral operator. Inclusion relations for functions in th
Externí odkaz:
https://doaj.org/article/f8396b3695434dc7ae27e246190c1ec2
Publikováno v:
Journal of the Egyptian Mathematical Society, Vol 25, Iss 3, Pp 286-290 (2017)
Making use of the operator Lq,ν associated with functions of the form f(z)=1z+∑k=1∞akzk−1, which are analytic in the punctured unit disc U*:=U∖{0}, we introduce two subclasses of meromorphic functions and investigate convolution properties a
Externí odkaz:
https://doaj.org/article/21e5797286154d62b295599755a7804e
Publikováno v:
Le Matematiche, Vol 68, Iss 2, Pp 283-295 (2013)
In this paper, we obtain Fekete-Szegö inequalities for a certain class of meromorphic functions f(z). Sharp bounds for the Fekete-Szegö functional |a1-μa02|are obtained.
Externí odkaz:
https://doaj.org/article/24337f54b5c747c0893502e9cc050891