Zobrazeno 1 - 10
of 71
pro vyhledávání: '"Han, Lijia"'
In this paper, we study the standing wave solutions of Klein--Gordon equation with logarithmic nonlinearity. The existence of the standing wave solution related to the ground state $\phi_0(x)$ is obtained. Further, we prove the instability of solutio
Externí odkaz:
http://arxiv.org/abs/2402.11546
Autor:
Wang, Xiaohong, Han, Lijia
We consider the global existence and scattering for solutions of magnetic Zakharov system in three-dimensional space. When the initial data is small, we prove the existence of smooth global solutions and scattering results, by combining the space--ti
Externí odkaz:
http://arxiv.org/abs/2402.10463
Autor:
Han, Lijia1 (AUTHOR) hljmath@ncepu.edu.cn, Wang, Xiaohong1 (AUTHOR) wangxiaohong2024@126.com, Yu, Yin2 (AUTHOR) guwole@163.com, Wang, Duan3 (AUTHOR) wangduan@niunep.com
Publikováno v:
Mathematics (2227-7390). May2024, Vol. 12 Issue 9, p1402. 16p.
In this paper, we study the Cauchy problem for the Benjamin-Ono-Burgers equation $\partial_t u-\epsilon \partial_x^2 u+\mathcal{H}\partial_x^2u+u u_x=0$, where $\mathcal{H}$ denotes the Hilbert transform. We obtain that it is uniformly locally well-p
Externí odkaz:
http://arxiv.org/abs/1903.03291
Autor:
Chen, Haoyong, Han, Lijia
The recent research report of U.S. Department of Energy prompts us to re-examine the pricing theories applied in electricity market design. The theory of spot pricing is the basis of electricity market design in many countries, but it has two major d
Externí odkaz:
http://arxiv.org/abs/1710.07918
It is shown that smooth solutions with small amplitude to the 1D Euler-Poisson system for electrons persist forever with no shock formation.
Comment: 64pages
Comment: 64pages
Externí odkaz:
http://arxiv.org/abs/1502.00398
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Applied Mathematics Letters August 2019 94:140-148
We study the inviscid limit for the Cauchy problem of derivative Ginzburg-Landau equation in higher dimension space n>2. We show that it is global well-posed and its solution will converge to that of derivative Schrodinger equation.
Externí odkaz:
http://arxiv.org/abs/1004.1221
Autor:
Cui, Wenjun, Han, Lijia
Publikováno v:
In Applied Mathematics Letters March 2018 77:13-20