Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Hammadi Abidi"'
Autor:
Hammadi Abidi, Ping Zhang
Publikováno v:
Chinese Annals of Mathematics, Series B. 40:643-688
In this paper, the authors first consider the global well-posedness of 3-D Boussinesq system, which has variable kinematic viscosity yet without thermal conductivity and buoyancy force, provided that the viscosity coefficient is sufficiently close to
Autor:
Hammadi Abidi, Guilong Gui
Publikováno v:
Communications in Mathematical Sciences. 17:1625-1652
Autor:
Ping Zhang, Hammadi Abidi
Publikováno v:
Advances in Mathematics. 305:1202-1249
In this paper, we investigate the global well-posedness of 2-D Boussinesq system, which has variable kinematic viscosity and with thermal conductivity of | D | θ , with general initial data provided that the viscosity coefficient is sufficiently clo
Autor:
Hammadi Abidi, Ping Zhang
Publikováno v:
Communications on Pure and Applied Mathematics. 70:1509-1561
Autor:
Ping Zhang, Hammadi Abidi
Publikováno v:
Journal of Differential Equations. 259:3755-3802
Given solenoidal vector u 0 ∈ H ˙ − 2 δ ∩ H 1 ( R 2 ) , ρ 0 − 1 ∈ L 2 ( R 2 ) , and ρ 0 ∈ L ∞ ∩ W ˙ 1 , r ( R 2 ) with a positive lower bound for δ ∈ ( 0 , 1 2 ) and 2 r 2 1 − 2 δ , we prove that 2-D incompressible inhomoge
Autor:
Hammadi Abidi, Ping Zhang
Publikováno v:
Calculus of Variations and Partial Differential Equations. 54:3251-3276
In this paper, we investigate the global regularity to 3-D inhomogeneous incompressible Navier–Stokes system with axisymmetric initial data which does not have swirl component for the initial velocity. We first prove that the \(L^\infty \) norm to
Autor:
Hammadi Abidi, Ping Zhang
Publikováno v:
Science China Mathematics. 58:1129-1150
Given initial data (ρ 0, u 0) satisfying 0 < m ⩽ ρ 0 ⩽ M, $$\rho _0 - 1 \in L^2 \cap \dot W^{1,r} (R^3 )$$ and $$u_0 \in \dot H^{ - 2\delta } \cap H^1 (\mathbb{R}^3 )$$ for δ ∈]1/4, 1/2[ and r ∈]6, 3/1 − 2δ[, we prove that: there exists
Publikováno v:
Journal de Mathématiques Pures et Appliquées. 100:166-203
Without smallness assumption on the variation of the initial density function, we first prove the local well-posedness of 3-D incompressible inhomogeneous Navier–Stokes equations with initial data ( a 0 , u 0 ) in the critical Besov spaces B λ , 1
Publikováno v:
Archive for Rational Mechanics and Analysis. 204:189-230
We prove the local wellposedness of three-dimensional incompressible inhomogeneous Navier–Stokes equations with initial data in the critical Besov spaces, without assumptions of small density variation. Furthermore, if the initial velocity field is
Publikováno v:
Discrete and Continuous Dynamical Systems-Series S
Discrete and Continuous Dynamical Systems-Series S, American Institute of Mathematical Sciences, 2011, 29 (3), pp.737-756. ⟨10.3934/dcds.2011.29.737⟩
Discrete and Continuous Dynamical Systems-Series S, 2011, 29 (3), pp.737-756. ⟨10.3934/dcds.2011.29.737⟩
Discrete and Continuous Dynamical Systems-Series S, American Institute of Mathematical Sciences, 2011, 29 (3), pp.737-756. 〈10.3934/dcds.2011.29.737〉
Discrete and Continuous Dynamical Systems-Series S, American Institute of Mathematical Sciences, 2011, 29 (3), pp.737-756. ⟨10.3934/dcds.2011.29.737⟩
Discrete and Continuous Dynamical Systems-Series S, 2011, 29 (3), pp.737-756. ⟨10.3934/dcds.2011.29.737⟩
Discrete and Continuous Dynamical Systems-Series S, American Institute of Mathematical Sciences, 2011, 29 (3), pp.737-756. 〈10.3934/dcds.2011.29.737〉
International audience; In this paper we prove a global well-posedness result for tridimensional Navier-Stokes-Boussinesq system with axisymmetric initial data. This system couples Navier-Stokes equations with a transport equation governing the densi