Zobrazeno 1 - 10
of 55
pro vyhledávání: '"Hamdani, Mohamed Karim"'
Publikováno v:
ISSN 2836-3310 2023
In the present manuscript, we focus on a novel tri-nonlocal Kirchhoff problem, which involves the $p(x)$-fractional Laplacian equations of variable order. The problem is stated as follows: \begin{eqnarray*} \left\{ \begin{array}{ll} M\Big(\sigma_{p(x
Externí odkaz:
http://arxiv.org/abs/2309.04879
This paper deals with a class of nonlocal variable $s(.)$-order fractional $p(.)$-Kirchhoff type equations: \begin{eqnarray*} \left\{ \begin{array}{ll} \mathcal{K}\left(\int_{\mathbb{R}^{2N}}\frac{1}{p(x,y)}\frac{|\varphi(x)-\varphi(y)|^{p(x,y)}}{|x-
Externí odkaz:
http://arxiv.org/abs/2308.08007
Autor:
Bellamouchi, Chahinez1 (AUTHOR), Hamdani, Mohamed Karim2,3,4 (AUTHOR), Boulaaras, Salah5 (AUTHOR) s.boularas@qu.edu.sa
Publikováno v:
Boundary Value Problems. 9/12/2024, Vol. 2024 Issue 1, p1-22. 22p.
In this paper, we prove the existence of infinitely many solutions for a class of quasilinear elliptic $m(x)$-polyharmonic Kirchhoff equations where the nonlinear function has a quasicritical growth at infinity and without assuming the Ambrosetti and
Externí odkaz:
http://arxiv.org/abs/2106.07705
This paper is concerned with an elliptic system of Kirchhoff type, driven by the variable-order fractional $p(x)$-operator. With the help of the direct variational method and Ekeland variational principle, we show the existence of a weak solution. Th
Externí odkaz:
http://arxiv.org/abs/2005.06680
Nonlocal Lazer-McKenna type problem perturbed by the Hardy's potential and its parabolic equivalence
In this paper, we study the effect of Hardy potential on the existence or non-existence of solutions to a fractional Laplacian problem involving a singular nonlinearity. Also, we mention a stability result.
Comment: arXiv admin note: text overla
Comment: arXiv admin note: text overla
Externí odkaz:
http://arxiv.org/abs/2005.05259
Autor:
Hamdani, Mohamed Karim
Publikováno v:
Asian-European Journal of Mathematics, World Scientific (2019)
We deal with existence and multiplicity results for the following nonhomogeneous and homogeneous equations, respectively: \begin{eqnarray*} (P_g)\quad - \Delta_{\lambda} u + V(x) u = f(x,u)+g(x),\;\mbox{ in } \R^N,\; \end{eqnarray*} and \begin{eqnarr
Externí odkaz:
http://arxiv.org/abs/1909.03417
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Consider the following $m-$polyharmonic Kirchhoff problem: \begin{eqnarray} \label{ea} \begin{cases} M\left(\int_{\O}|D_r u|^{m} +a|u|^m\right)[\Delta^r_m u +a|u|^{m-2}u]= K(x)f(u) &\mbox{in}\quad \Omega, \\ u=\left(\frac{\partial}{\partial \nu}\righ
Externí odkaz:
http://arxiv.org/abs/1807.11040
Publikováno v:
Journal of Elliptic & Parabolic Equations; Dec2024, Vol. 10 Issue 2, p1123-1142, 20p