Zobrazeno 1 - 10
of 91
pro vyhledávání: '"Hamadneh, Tareq"'
In this article, we study the class of surfaces of revolution in the 3-dimensional Lorentz-Minkowski space with nonvanishing Gauss curvature whose position vector x satisfies the condition {\Delta}IIIx = Ax, where A is a square matrix of order 3 and
Externí odkaz:
http://arxiv.org/abs/2208.12578
Autor:
Al-Zoubi, Hassan, Hamadneh, Tareq
We study quadric surfaces in the 3-dimensional Euclidean space which are of coordinate finite type Gauss map with respect to the second fundamental form $II$, i.e., their Gauss map vector $\boldsymbol{n}$ satisfies the relation $\Delta ^{II}\boldsymb
Externí odkaz:
http://arxiv.org/abs/2006.04529
Autor:
Al-Zoubi, Hassan, Hamadneh, Tareq
In this article, we study the class of surfaces of revolution in the 3-dimensional Euclidean space $E^{3}$ with nonvanishing Gauss curvature whose position vector $\boldsymbol{x}$ satisfies the condition $\Delta^{II}\boldsymbol{x}=A\boldsymbol{x}$, w
Externí odkaz:
http://arxiv.org/abs/2005.05120
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Al-Zoubi, Hassan, Hamadneh, Tareq
In this paper, we consider surfaces of revolution in the 3-dimensional Euclidean space E3 with nonvanishing Gauss curvature. We introduce the finite Chen type surfaces concerning the third fundamental form of the surface. We present a special case of
Externí odkaz:
http://arxiv.org/abs/1907.12390
Rational functions of total degree $l$ in n variables have a representation in the Bernstein form defined over $n$ dimensional simplex. The range of a rational function is bounded by the smallest and the largest rational Bernstein coefficients over a
Externí odkaz:
http://arxiv.org/abs/1906.11037
In this paper, we investigate the problem of finding tight linear lower bounding functions for multivariate polynomials over boxes. These functions are obtained by the expansion of polynomials into Bernstein form and using the linear least squares fu
Externí odkaz:
http://arxiv.org/abs/1906.03472
In this paper, we consider tubes in the Euclidean 3-space whose Gauss map n is of coordinate finite I-type, i.e., the position vector n satisfies the relation {\Delta}In = {\Lambda}n, where {\Delta}I is the Laplace operator with respect to the first
Externí odkaz:
http://arxiv.org/abs/1904.12339
Autor:
Alsayyed, Omar1 (AUTHOR) omarm_re@hu.edu.jo, Hamadneh, Tareq2 (AUTHOR) t.hamadneh@zuj.edu.jo, Al-Tarawneh, Hassan3 (AUTHOR) h.altarawneh@ammanu.edu.jo, Alqudah, Mohammad4 (AUTHOR) mohammad.qudah@gju.edu.jo, Gochhait, Saikat5,6 (AUTHOR) irina.leonova@unn.ru, Leonova, Irina6,7 (AUTHOR), Malik, Om Parkash8 (AUTHOR) maliko@ucalgary.ca, Dehghani, Mohammad9 (AUTHOR) m.dehghani@sutech.ac.ir
Publikováno v:
Biomimetics (2313-7673). Dec2023, Vol. 8 Issue 8, p619. 41p.
Publikováno v:
In Journal of Computational and Applied Mathematics November 2022 414