Zobrazeno 1 - 10
of 71
pro vyhledávání: '"Halbout, Gilles"'
Autor:
Halbout, Gilles, Tang, Xiang
Let $(X,\omega)$ be a symplectic orbifold which is locally like the quotient of a $\mathbb{Z}_2$ action on $\reals^n$. Let $A^{((\hbar))}_X$ be a deformation quantization of $X$ constructed via the standard Fedosov method with characteristic class be
Externí odkaz:
http://arxiv.org/abs/0908.4301
Let $\Gamma$ be a finite group acting faithfully and linearly on a vector space $V$. Let $T(V)$ ($S(V)$) be the tensor (symmetric) algebra associated to $V$ which has a natural $\Gamma$ action. We study generalized quadratic relations on the tensor a
Externí odkaz:
http://arxiv.org/abs/0807.0027
Autor:
Halbout, Gilles
Le $X$ be a $C^\infty$-manifold and $\g$ be a finite dimensional Lie algebra acting freely on $X$. Let $r \in \ve^2(\g)$ be such that $Z=[r,r] \in \ve^3(\g)^\g$. In this paper we prove that every quasi-Poisson $(\g,Z)$-manifold can be quantized. This
Externí odkaz:
http://arxiv.org/abs/0801.2789
Autor:
Calaque, Damien, Halbout, Gilles
Publikováno v:
Journal of Geometry and Physics 61 (2011), no. 8, 1401-1414
In this paper we prove that any Poisson structure on a sheaf of Lie algebroids admits a weak deformation quantization, and give a sufficient condition for such a Poisson structure to admit an actual deformation quantization. We also answer the corres
Externí odkaz:
http://arxiv.org/abs/0707.1978
Autor:
Halbout, Gilles, Tang, Xiang
Let $G$ be a Poisson Lie group and $\g$ its Lie bialgebra. Suppose that $\g$ is a group Lie bialgebra. This means that there is an action of a discrete group $\Gamma$ on $G$ deforming the Poisson structure into coboundary equivalent ones. Starting fr
Externí odkaz:
http://arxiv.org/abs/math/0703359
Autor:
Halbout, Gilles, Tang, Xiang
In this paper, we compute the Gerstenhaber bracket on the Hoch-schild cohomology of $C^\infty(M)\rtimes G$ for a finite group $G$ acting on a compact manifold $M$. Using this computation, we obtain geometric descriptions for all noncommutative Poisso
Externí odkaz:
http://arxiv.org/abs/math/0606436
Autor:
Halbout, Gilles
Let $(g,\delta_\hbar)$ be a Lie bialgebra. Let $(U_\hbar(g),\Delta_\hbar)$ a quantization of $(g,\delta_\hbar)$ through Etingof-Kazhdan functor. We prove the existence of a $L_\infty$-morphism between the Lie algebra $C(\g)=\Lambda(g)$ and the tensor
Externí odkaz:
http://arxiv.org/abs/math/0506487
Publikováno v:
Journal fur die reine und angewandte Mathematik (Crelles Journal) 612 (2007), 81-127
In this paper we prove Lie algebroid versions of Tsygan's formality conjecture for Hochschild chains both in the smooth and holomorphic settings. In the holomorphic setting our result implies a version of Tsygan's formality conjecture for Hochschild
Externí odkaz:
http://arxiv.org/abs/math/0504372
Let X be a Poisson manifold and C a coisotropic submanifold and let I be the vanishing ideal of C. In this work we want to construct a star product * on X such that I[[lambda]] is a left ideal for *. Thus we obtain a representation of the star produc
Externí odkaz:
http://arxiv.org/abs/math/0504276
Autor:
Ginot, Grégory, Halbout, Gilles
Let $\g\_2$ be the Hochschild complex of cochains on $C^\infty(\RM^n)$ and $\g\_1$ be the space of multivector fields on $\RM^n$. In this paper we prove that given any $G\_\infty$-structure ({\rm i.e.} Gerstenhaber algebra up to homotopy structure) o
Externí odkaz:
http://arxiv.org/abs/math/0304004