Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Halıcı Serpıl"'
Autor:
Halıcı Serpil
Publikováno v:
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 31, Iss 3, Pp 167-176 (2023)
In this study, we have examined q− central Delannoy numbers and their Cauchy products. We have given some related equalities using the properties of recurrence relations. Moreover, using quantum integers, we have obtained the fundamental identities
Externí odkaz:
https://doaj.org/article/eaab7880fb7942fe87268a12e75e2a3b
Autor:
Halici Serpil, Cerda-Morales Gamaliel
Publikováno v:
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 29, Iss 1, Pp 71-82 (2021)
We study properties of Gaussian Fibonacci numbers. We start with some basic identities. Thereafter, we focus on properties of the quaternions that accept gaussian Fibonacci numbers as coefficients. Using the Binet form we prove fundamental relations
Externí odkaz:
https://doaj.org/article/4c4101a8e21141fea8af13d68273cd1a
Autor:
Karataş Adnan, Halici Serpil
Publikováno v:
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 25, Iss 3, Pp 97-106 (2017)
In this paper, first we define Horadam octonions by Horadam sequence which is a generalization of second order recurrence relations. Also, we give some fundamental properties involving the elements of that sequence. Then, we obtain their Binet-like f
Externí odkaz:
https://doaj.org/article/a1ef2591643a4d428dc2ce05c7eb4350
Publikováno v:
Mathematica Moravica, Vol 26, Iss 1, Pp 77-88 (2022)
In this paper, we define the complex-type Padovan-p sequence and then give the relationships between the Padovan-p numbers and the complex-type Padovan-p numbers. Also, we provide a new Binet formula and a new combinatorial representation of the comp
Externí odkaz:
https://doaj.org/article/c673cb6829134d6ebe2d087b043ab448
Autor:
Halici, Serpil, Karataş, Adnan
In this work, we made a generalization that includes all bicomplex Fibonacci-like numbers such as; Fibonacci, Lucas, Pell, etc.. We named this generalization as bicomplex Horadam numbers. For bicomplex Fibonacci and Lucas numbers we gave some additio
Externí odkaz:
http://arxiv.org/abs/1806.05038
Autor:
Halici, Serpil, Karataş, Adnan
In this study, we investigate Horadam sequence as generalization of linear recurrence equations of order two. By the aid of this sequence we obtain a new generalization for sequences of dual quaternions and dual octonions. Moreover, we derive some im
Externí odkaz:
http://arxiv.org/abs/1702.08657
Autor:
Karataş, Adnan, Halici, Serpil
In this paper, first we define Horadam octonions by Horadam sequence which is a generalization of second order recurrence relations. Also, we give some fundamental properties involving the elements of that sequence. Then, we obtain their Binet-like f
Externí odkaz:
http://arxiv.org/abs/1611.10143
Autor:
Halıcı, Serpil
In this study, we introduce a new classes of quaternion numbers. We show that this new classes quaternion numbers include all of quaternion numbers such as Fibonacci, Lucas, Pell, Jacobsthal, Pell-Lucas, Jacobsthal-Lucas quaternions have been studied
Externí odkaz:
http://arxiv.org/abs/1611.07660
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this paper, we study the timelike tubular Weingarten surfaces in 3-dimensional Minkowski space $IR_1^3 $.We have obtained some conditions for being $({K_{II},H})$, $({K_{II},K})$, timelike tubular Weingarten surfaces where are the second Gaussian
Externí odkaz:
http://arxiv.org/abs/1106.2395