Zobrazeno 1 - 10
of 37
pro vyhledávání: '"Hajo Wiemer"'
Publikováno v:
Scientific Reports, Vol 12, Iss 1, Pp 1-14 (2022)
Abstract Machine Learning has become more important for materials engineering in the last decade. Globally, automated machine learning (AutoML) is growing in popularity with the increasing demand for data analysis solutions. Yet, it is not frequently
Externí odkaz:
https://doaj.org/article/669881a96b73477cadea16281b98e5d2
Autor:
Hajo Wiemer, Dorothea Schneider, Valentin Lang, Felix Conrad, Mauritz Mälzer, Eugen Boos, Kim Feldhoff, Lucas Drowatzky, Steffen Ihlenfeldt
Publikováno v:
Multimodal Technologies and Interaction, Vol 7, Iss 3, p 27 (2023)
Data-driven methods based on artificial intelligence (AI) are powerful yet flexible tools for gathering knowledge and automating complex tasks in many areas of science and practice. Despite the rapid development of the field, the existing potential o
Externí odkaz:
https://doaj.org/article/2c9970b09e874e94a0b4fed6b9907954
Publikováno v:
Applied Sciences, Vol 11, Iss 20, p 9590 (2021)
With the trend of increasing sensors implementation in production systems and comprehensive networking, essential preconditions are becoming required to be established for the successful application of data-driven methods of equipment monitoring, pro
Externí odkaz:
https://doaj.org/article/80f9457af5cb41b785412b544470d35c
Autor:
Albrecht Hänel, André Seidel, Uwe Frieß, Uwe Teicher, Hajo Wiemer, Dongqian Wang, Eric Wenkler, Lars Penter, Arvid Hellmich, Steffen Ihlenfeldt
Publikováno v:
Journal of Manufacturing and Materials Processing, Vol 5, Iss 3, p 80 (2021)
This paper presents a brief introduction to competition-driven digital transformation in the machining sector. On this basis, the creation of a digital twin for machining processes is approached firstly using a basic digital twin structure. The latte
Externí odkaz:
https://doaj.org/article/cbcc55b3e7fd40af8e503d2df53fdcbb
Autor:
Valentin Lang, Steven Weingarten, Hajo Wiemer, Uwe Scheithauer, Felix Glausch, Robert Johne, Alexander Michaelis, Steffen Ihlenfeldt
Publikováno v:
Journal of Manufacturing and Materials Processing, Vol 4, Iss 3, p 74 (2020)
Multi-material jetting (CerAM MMJ, previously T3DP) enables the additive manufacturing of ceramics, metals, glass and hardmetals, demonstrating comparatively high solid contents of the processed materials. The material is applied drop by drop onto a
Externí odkaz:
https://doaj.org/article/f5c3afc34ba54d2a92c9ebee21f96661
Publikováno v:
Applied Sciences, Vol 9, Iss 12, p 2407 (2019)
The value of data analytics is fundamental in cyber-physical production systems for tasks like optimization and predictive maintenance. The de facto standard for conducting data analytics in industrial applications is the CRISP-DM methodology. Howeve
Externí odkaz:
https://doaj.org/article/8e13039474794864a350fe2f0d87c43e
Publikováno v:
Bauingenieur. 95:105-113
Zusammenfassung Aktuelle Entwicklungen im Bausektor widmen sich dem Carbonbeton, der als neuer Baustoff den bisherigen Stahlbeton ergänzen soll, um insbesondere Ressourcen zu schonen. Bislang wurden umfangreiche werkstoffliche und fertigungstechnolo
Publikováno v:
Procedia CIRP. 79:403-408
The value of data analytics is fundamental in cyber-physical production systems for tasks like optimization and predictive maintenance. The de facto standard for conducting data analytics in industrial applications is the CRISP-DM methodology. Howeve
Autor:
Steffen Ihlenfeldt, Mirko Riedel, Jessica Deutsch, Hajo Wiemer, Tom Albrecht, Jens Müller, Lars Penter
One of the main errors in the machining accuracy of machine tools is the displacement through thermal induced deformation. Modern design and construction methods aim to optimize the heat flow in the machine to achieve minimum displacement. To enable
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4ae5d67e693a1880b6598da7cf7fc5a7
https://publica.fraunhofer.de/handle/publica/266068
https://publica.fraunhofer.de/handle/publica/266068
Autor:
André Seidel, Eric Wenkler, Steffen Ihlenfeldt, Uwe Teicher, Arvid Hellmich, Dongqian Wang, Albrecht Hänel, Uwe Frieß, Lars Penter, Hajo Wiemer
Publikováno v:
Journal of Manufacturing and Materials Processing
Volume 5
Issue 3
Journal of Manufacturing and Materials Processing, Vol 5, Iss 80, p 80 (2021)
Volume 5
Issue 3
Journal of Manufacturing and Materials Processing, Vol 5, Iss 80, p 80 (2021)
This paper presents a brief introduction to competition-driven digital transformation in the machining sector. On this basis, the creation of a digital twin for machining processes is approached firstly using a basic digital twin structure. The latte