Zobrazeno 1 - 10
of 151
pro vyhledávání: '"Hajij Mustafa"'
Autor:
Hanandeh Ahmad, Hajij Mustafa
Publikováno v:
International Journal of Data and Network Science, Vol 6, Iss 3, Pp 727-732 (2022)
The major purpose of this research is studying the impact of artificial intelligence, big data analytics and business intelligence on transforming capability and digital transformation in Jordanian telecommunication firms. 303 samples were gathered a
Externí odkaz:
https://doaj.org/article/e403bd28917a46d49119aa2aa2daae43
Autor:
Bernárdez, Guillermo, Telyatnikov, Lev, Montagna, Marco, Baccini, Federica, Papillon, Mathilde, Ferriol-Galmés, Miquel, Hajij, Mustafa, Papamarkou, Theodore, Bucarelli, Maria Sofia, Zaghen, Olga, Mathe, Johan, Myers, Audun, Mahan, Scott, Lillemark, Hansen, Vadgama, Sharvaree, Bekkers, Erik, Doster, Tim, Emerson, Tegan, Kvinge, Henry, Agate, Katrina, Ahmed, Nesreen K, Bai, Pengfei, Banf, Michael, Battiloro, Claudio, Beketov, Maxim, Bogdan, Paul, Carrasco, Martin, Cavallo, Andrea, Choi, Yun Young, Dasoulas, George, Elphick, Matouš, Escalona, Giordan, Filipiak, Dominik, Fritze, Halley, Gebhart, Thomas, Gil-Sorribes, Manel, Goomanee, Salvish, Guallar, Victor, Imasheva, Liliya, Irimia, Andrei, Jin, Hongwei, Johnson, Graham, Kanakaris, Nikos, Koloski, Boshko, Kovač, Veljko, Lecha, Manuel, Lee, Minho, Leroy, Pierrick, Long, Theodore, Magai, German, Martinez, Alvaro, Masden, Marissa, Mežnar, Sebastian, Miquel-Oliver, Bertran, Molina, Alexis, Nikitin, Alexander, Nurisso, Marco, Piekenbrock, Matt, Qin, Yu, Rygiel, Patryk, Salatiello, Alessandro, Schattauer, Max, Snopov, Pavel, Suk, Julian, Sánchez, Valentina, Tec, Mauricio, Vaccarino, Francesco, Verhellen, Jonas, Wantiez, Frederic, Weers, Alexander, Zajec, Patrik, Škrlj, Blaž, Miolane, Nina
This paper describes the 2nd edition of the ICML Topological Deep Learning Challenge that was hosted within the ICML 2024 ELLIS Workshop on Geometry-grounded Representation Learning and Generative Modeling (GRaM). The challenge focused on the problem
Externí odkaz:
http://arxiv.org/abs/2409.05211
Autor:
Telyatnikov, Lev, Bernardez, Guillermo, Montagna, Marco, Vasylenko, Pavlo, Zamzmi, Ghada, Hajij, Mustafa, Schaub, Michael T, Miolane, Nina, Scardapane, Simone, Papamarkou, Theodore
This work introduces TopoBenchmarkX, a modular open-source library designed to standardize benchmarking and accelerate research in Topological Deep Learning (TDL). TopoBenchmarkX maps the TDL pipeline into a sequence of independent and modular compon
Externí odkaz:
http://arxiv.org/abs/2406.06642
Autor:
Ballester, Rubén, Hernández-García, Pablo, Papillon, Mathilde, Battiloro, Claudio, Miolane, Nina, Birdal, Tolga, Casacuberta, Carles, Escalera, Sergio, Hajij, Mustafa
Topological Deep Learning seeks to enhance the predictive performance of neural network models by harnessing topological structures in input data. Topological neural networks operate on spaces such as cell complexes and hypergraphs, that can be seen
Externí odkaz:
http://arxiv.org/abs/2405.14094
Autor:
Papamarkou, Theodore, Birdal, Tolga, Bronstein, Michael, Carlsson, Gunnar, Curry, Justin, Gao, Yue, Hajij, Mustafa, Kwitt, Roland, Liò, Pietro, Di Lorenzo, Paolo, Maroulas, Vasileios, Miolane, Nina, Nasrin, Farzana, Ramamurthy, Karthikeyan Natesan, Rieck, Bastian, Scardapane, Simone, Schaub, Michael T., Veličković, Petar, Wang, Bei, Wang, Yusu, Wei, Guo-Wei, Zamzmi, Ghada
Topological deep learning (TDL) is a rapidly evolving field that uses topological features to understand and design deep learning models. This paper posits that TDL is the new frontier for relational learning. TDL may complement graph representation
Externí odkaz:
http://arxiv.org/abs/2402.08871
Autor:
Hajij, Mustafa, Papillon, Mathilde, Frantzen, Florian, Agerberg, Jens, AlJabea, Ibrahem, Ballester, Ruben, Battiloro, Claudio, Bernárdez, Guillermo, Birdal, Tolga, Brent, Aiden, Chin, Peter, Escalera, Sergio, Fiorellino, Simone, Gardaa, Odin Hoff, Gopalakrishnan, Gurusankar, Govil, Devendra, Hoppe, Josef, Karri, Maneel Reddy, Khouja, Jude, Lecha, Manuel, Livesay, Neal, Meißner, Jan, Mukherjee, Soham, Nikitin, Alexander, Papamarkou, Theodore, Prílepok, Jaro, Ramamurthy, Karthikeyan Natesan, Rosen, Paul, Guzmán-Sáenz, Aldo, Salatiello, Alessandro, Samaga, Shreyas N., Scardapane, Simone, Schaub, Michael T., Scofano, Luca, Spinelli, Indro, Telyatnikov, Lev, Truong, Quang, Walters, Robin, Yang, Maosheng, Zaghen, Olga, Zamzmi, Ghada, Zia, Ali, Miolane, Nina
We introduce TopoX, a Python software suite that provides reliable and user-friendly building blocks for computing and machine learning on topological domains that extend graphs: hypergraphs, simplicial, cellular, path and combinatorial complexes. To
Externí odkaz:
http://arxiv.org/abs/2402.02441
Due to their ability to model meaningful higher order relations among a set of entities, higher order network models have emerged recently as a powerful alternative for graph-based network models which are only capable of modeling binary relationship
Externí odkaz:
http://arxiv.org/abs/2312.11862
Autor:
Hajij, Mustafa, Zamzmi, Ghada, Papamarkou, Theodore, Guzmán-Sáenz, Aldo, Birdal, Tolga, Schaub, Michael T.
Publikováno v:
57th Asilomar Conference on Signals, Systems, and Computers, 2023
Graph-based signal processing techniques have become essential for handling data in non-Euclidean spaces. However, there is a growing awareness that these graph models might need to be expanded into `higher-order' domains to effectively represent the
Externí odkaz:
http://arxiv.org/abs/2312.09504
Autor:
Papillon, Mathilde, Hajij, Mustafa, Jenne, Helen, Mathe, Johan, Myers, Audun, Papamarkou, Theodore, Birdal, Tolga, Dey, Tamal, Doster, Tim, Emerson, Tegan, Gopalakrishnan, Gurusankar, Govil, Devendra, Guzmán-Sáenz, Aldo, Kvinge, Henry, Livesay, Neal, Mukherjee, Soham, Samaga, Shreyas N., Ramamurthy, Karthikeyan Natesan, Karri, Maneel Reddy, Rosen, Paul, Sanborn, Sophia, Walters, Robin, Agerberg, Jens, Barikbin, Sadrodin, Battiloro, Claudio, Bazhenov, Gleb, Bernardez, Guillermo, Brent, Aiden, Escalera, Sergio, Fiorellino, Simone, Gavrilev, Dmitrii, Hassanin, Mohammed, Häusner, Paul, Gardaa, Odin Hoff, Khamis, Abdelwahed, Lecha, Manuel, Magai, German, Malygina, Tatiana, Ballester, Rubén, Nadimpalli, Kalyan, Nikitin, Alexander, Rabinowitz, Abraham, Salatiello, Alessandro, Scardapane, Simone, Scofano, Luca, Singh, Suraj, Sjölund, Jens, Snopov, Pavel, Spinelli, Indro, Telyatnikov, Lev, Testa, Lucia, Yang, Maosheng, Yue, Yixiao, Zaghen, Olga, Zia, Ali, Miolane, Nina
This paper presents the computational challenge on topological deep learning that was hosted within the ICML 2023 Workshop on Topology and Geometry in Machine Learning. The competition asked participants to provide open-source implementations of topo
Externí odkaz:
http://arxiv.org/abs/2309.15188
The natural world is full of complex systems characterized by intricate relations between their components: from social interactions between individuals in a social network to electrostatic interactions between atoms in a protein. Topological Deep Le
Externí odkaz:
http://arxiv.org/abs/2304.10031