Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Hajian Majid"'
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 42, Iss 2, Pp 613-626 (2022)
A set S of vertices in a graph G is a dominating set of G if every vertex not in S is adjacent to some vertex in S. The domination number, γ(G), of G is the minimum cardinality of a dominating set of G. The authors proved in [A new lower bound on th
Externí odkaz:
https://doaj.org/article/219eb4d1d16441a7beb82e20e13ec770
Autor:
Hajian Majid, Rad Nader Jafari
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 41, Iss 2, Pp 647-664 (2021)
For k ≥ 1, a k-fair total dominating set (or just kFTD-set) in a graph G is a total dominating set S such that |N(v) ∩ S| = k for every vertex v ∈ V\S. The k-fair total domination number of G, denoted by ftdk(G), is the minimum cardinality of a
Externí odkaz:
https://doaj.org/article/74835ccff6b14fcfa53f53eaee3429b2
Autor:
Hajian Majid, Rad Nader Jafari
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 40, Iss 4, Pp 1085-1093 (2020)
For k ≥ 1, a k-fair dominating set (or just kFD-set), in a graph G is a dominating set S such that |N(v) ∩ S| = k for every vertex v ∈ V − S. The k-fair domination number of G, denoted by fdk(G), is the minimum cardinality of a kFD-set. A fai
Externí odkaz:
https://doaj.org/article/7d38b2b6a6f8498394315dee28fc635b
Autor:
Hajian Majid, Rad Nader Jafari
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 39, Iss 2, Pp 489-503 (2019)
For k ≥ 1, a k-fair dominating set (or just kFD-set) in a graph G is a dominating set S such that |N(v) ∩ S| = k for every vertex v ∈ V \ S. The k-fair domination number of G, denoted by fdk(G), is the minimum cardinality of a kFD-set. A fair d
Externí odkaz:
https://doaj.org/article/d69fe12a56924b7a8fb851d900cb9fd6
Autor:
Hajian Majid, Rad Nader Jafari
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 37, Iss 4, Pp 859-871 (2017)
A Roman dominating function (or just RDF) on a graph G = (V,E) is a function f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF f is the va
Externí odkaz:
https://doaj.org/article/0a02c85f202f4e8cbd9b31d297704003
Autor:
Hajian, Majid1 (AUTHOR), Henning, Michael A.2 (AUTHOR) mahenning@uj.ac.za, Rad, Nader Jafari3 (AUTHOR)
Publikováno v:
Bulletin of the Malaysian Mathematical Sciences Society. Mar2020, Vol. 43 Issue 2, p1555-1568. 14p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
QM - Quaestiones Mathematicae; Feb2023, Vol. 46 Issue 1, p35-48, 14p
Autor:
Hajian, Majid, Rad, Nader Jafari
Publikováno v:
In Discrete Applied Mathematics 15 February 2019 254:280-282