Zobrazeno 1 - 10
of 84
pro vyhledávání: '"Haitham Bou-Ammar"'
Autor:
Alexander I. Cowen-Rivers, Wenlong Lyu, Rasul Tutunov, Zhi Wang, Antoine Grosnit, Ryan Rhys Griffiths, Alexandre Max Maraval, Hao Jianye, Jun Wang, Jan Peters, Haitham Bou-Ammar
Publikováno v:
Journal of Artificial Intelligence Research. 74:1269-1349
In this work we rigorously analyse assumptions inherent to black-box optimisation hyper-parameter tuning tasks. Our results on the Bayesmark benchmark indicate that heteroscedasticity and non-stationarity pose significant challenges for black-box opt
Autor:
Alexander I. Cowen-Rivers, Daniel Palenicek, Vincent Moens, Mohammed Amin Abdullah, Aivar Sootla, Jun Wang, Haitham Bou-Ammar
Publikováno v:
Machine Learning. 111:173-203
In this paper, we propose SAMBA, a novel framework for safe reinforcement learning that combines aspects from probabilistic modelling, information theory, and statistics. Our method builds upon PILCO to enable active exploration using novel(semi-)met
Autor:
Asif Khan, Alexander Imani Cowen-Rivers, Derrick-Goh-Xin Deik, Antoine Grosnit, Philippe ROBERT, Victor Greiff, Eva Smorodina, Puneet Rawat, Rahmad Akbar, Kamil Dreczkowski, Rasul Tatunov, Dany Bou-Ammar, Jun Wang, Haitham Bou-Ammar
Publikováno v:
SSRN Electronic Journal.
Autor:
Asif Khan, Alexander I. Cowen-Rivers, Antoine Grosnit, Derrick-Goh-Xin Deik, Philippe A. Robert, Victor Greiff, Eva Smorodina, Puneet Rawat, Rahmad Akbar, Kamil Dreczkowski, Rasul Tutunov, Dany Bou-Ammar, Jun Wang, Amos Storkey, Haitham Bou-Ammar
Publikováno v:
Cell Reports Methods. 3:100374
Publikováno v:
IEEE Transactions on Automatic Control. 64:3983-3994
In this paper, we propose a distributed Newton method for decenteralized optimization of large sums of convex functions. Our proposed method is based on creating a set of separable finite sum minimization problems by utilizing a decomposition techniq
Highly dynamic robotic tasks require high-speed and reactive robots. These tasks are particularly challenging due to the physical constraints, hardware limitations, and the high uncertainty of dynamics and sensor measures. To face these issues, it's
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7992ebadf07c335c828ea7ce77f4c317
http://arxiv.org/abs/2107.06140
http://arxiv.org/abs/2107.06140
Publikováno v:
Pattern Recognition. 72:407-418
Lifelong reinforcement learning provides a successful framework for agents to learn multiple consecutive tasks sequentially. Current methods, however, suffer from scalability issues when the agent has to solve a large number of tasks. In this paper,
Publikováno v:
AAAI
In situations where explicit communication is limited, human collaborators act by learning to: (i) infer meaning behind their partner's actions, and (ii) convey private information about the state to their partner implicitly through actions. The firs
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::81a9afd652adfdd8ba28ea43022af2b9
http://arxiv.org/abs/1810.04444
http://arxiv.org/abs/1810.04444
Publikováno v:
IJCAI
Within the context of video games the notion of perfectly rational agents can be undesirable as it leads to uninteresting situations, where humans face tough adversarial decision makers. Current frameworks for stochastic games and reinforcement learn
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7f8528d671165c13688737f1acdec1a1
http://arxiv.org/abs/1802.03216
http://arxiv.org/abs/1802.03216
Autor:
Christopher Amato, Haitham Bou Ammar, Elizabeth Churchill, Erez Karpas, Takashi Kido, Mike Kuniavsky, W. F. Lawless, Francesca Rossi, Frans A. Oliehoek, Stephen Russell, Keiki Takadama, Siddharth Srivastava, Karl Tuyls, Philip Van Allen, K. Brent Venable, Peter Vrancx, Shiqi Zhang
Publikováno v:
AI Magazine, 39(4)
AI Magazine; Vol 39 No 4: Winter 2018; 29-35
AI Magazine; Vol 39 No 4: Winter 2018; 29-35
© 2018, Association for the Advancement of Artifcial Intelligence. All rights reserved. The Association for the Advancement of Artifcial Intelligence, in cooperation with Stanford University's Department of Computer Science, presented the 2018 Sprin