Zobrazeno 1 - 10
of 62
pro vyhledávání: '"Hailong Dao"'
Autor:
HAILONG DAO, RYO TAKAHASHI
Publikováno v:
Forum of Mathematics, Sigma, Vol 3 (2015)
Let $R$ be a commutative noetherian local ring. As an analog of the notion of the dimension of a triangulated category defined by Rouquier, the notion of the dimension of a subcategory of finitely generated $R$-modules is introduced in this paper. We
Externí odkaz:
https://doaj.org/article/5d47bc1ef25c419796e40dd901e11623
Publikováno v:
Transactions of the American Mathematical Society, Series B. 10:355-380
We study reflexive modules over one dimensional Cohen-Macaulay rings. Our key technique exploits the concept of I I -Ulrich modules.
Autor:
Hailong Dao, David Eisenbud
The Burch index is a new invariant of a local ring R whose positivity implies a kind of linearity in resolutions of R-modules. We show that if R has depth zero and Burch index at least 2, then any non-free 7th R-syzygy contains the residue field as a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eff8a3b9eaac6c6d755aa37b7524c0bc
http://arxiv.org/abs/2208.05427
http://arxiv.org/abs/2208.05427
Publikováno v:
Journal of Algebra. 571:75-93
Let R be a commutative Noetherian local ring and M , N be finitely generated R-modules. We prove a number of results of the form: if Hom R ( M , N ) has some nice properties and Ext R 1 ≤ i ≤ n ( M , N ) = 0 for some n, then M (and sometimes N) m
Autor:
Ilya Smirnov, Hailong Dao
Publikováno v:
Israel Journal of Mathematics. 237:155-184
Let (R, m) be a local ring of characteristic p > 0 and M a finitely generated R-module. In this note we consider the limit $$\mathop {\lim }\limits_{n \to \infty } \frac{{l(H_m^0({F^n}(M)))}}{{{p^{n\dim R}}}}$$ where F(-) is the Peskine-Szpiro functo
Publikováno v:
Journal of Algebraic Geometry. 29:729-751
Let R R be a Cohen–Macaulay normal domain with a canonical module ω R \omega _R . It is proved that if R R admits a noncommutative crepant resolution (NCCR), then necessarily it is Q \mathds {Q} -Gorenstein. Writing S S for a Zariski local canonic
Publikováno v:
SIAM Journal on Discrete Mathematics. 34:1602-1608
We define and study the notion of a minimal Cohen-Macaulay simplicial complex. We prove that any Cohen-Macaulay complex is shelled over a minimal one in our sense, and we give sufficient conditions for a complex to be minimal Cohen-Macaulay. We show
Autor:
Hailong Dao, David Eisenbud
We study monomial ideals with linear presentation or partially linear resolution. We give combinatorial characterizations of linear presentation for square-free ideals of degree 3, and for primary ideals whose resolutions are linear except for the la
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4c793208bdbee6f79f053e2baabec7ab
http://arxiv.org/abs/2201.11263
http://arxiv.org/abs/2201.11263
Autor:
Jonathan Montaño, Hailong Dao
Publikováno v:
Mathematische Zeitschrift. 295:73-86
Let $R$ be a standard graded algebra over a field $k$, with irrelevant maximal ideal $\fm$, and $I$ a homogeneous $R$-ideal. We study the asymptotic vanishing behavior of the graded components of the local cohomology modules $\{\HH{i}{\fm}{R/I^n}\}_{
Autor:
Jay Schweig, Hailong Dao
Publikováno v:
Journal of Combinatorial Theory, Series A. 163:195-210
Fix a field $k$. When $\Delta$ is a simplicial complex on $n$ vertices with Stanley-Reisner ideal $I_\Delta$, we define and study an invariant called the $\textit{type defect}$ of $\Delta$. Except when $\Delta$ is of a single simplex, the type defect