Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Haidar Hosamo Hosamo"'
Publikováno v:
Applied Sciences, Vol 14, Iss 11, p 4819 (2024)
This paper presents a novel application of machine learning models to clarify the intricate behaviors of expansive soils, focusing on the impact of sand content, saturation level, and dry density. Departing from conventional methods, this research ut
Externí odkaz:
https://doaj.org/article/a6499105d5d24cedbf93939291505ec9
Autor:
Haidar Hosamo Hosamo, Christian Nordahl Rolfsen, Florent Zeka, Sigurd Sandbeck, Sami Said, Morten André Sætre
Publikováno v:
Infrastructures, Vol 9, Iss 4, p 75 (2024)
Exploring the integration of 5D Building Information Modeling (BIM) within the Norwegian construction sector, this study examines its transformative impact on cost estimation and project management, highlighting technological and skill-based adoption
Externí odkaz:
https://doaj.org/article/154b6bd514fa46b6be20f8764b9ced25
Autor:
Haidar Hosamo Hosamo, Henrik Kofoed Nielsen, Ammar Njeeb Alnmr, Paul Ragnar Svennevig, Kjeld Svidt
Publikováno v:
Frontiers in Built Environment, Vol 8 (2022)
This study aims to evaluate the utilization of technology known as Digital Twin for fault detection in buildings. The strategy consisted of studying existing applications, difficulties, and possibilities that come with it. The Digital Twin technology
Externí odkaz:
https://doaj.org/article/45a369693917499c9cfc41113179bbb1
Publikováno v:
Advances in Civil Engineering, Vol 2022 (2022)
There has been a significant surge in the interest in adopting cutting-edge new technologies in the civil engineering industry in recent times that monitor the Internet of Things (IoT) data and control automation systems. By combining the real and di
Externí odkaz:
https://doaj.org/article/a52665656e7c45c98f2060251926f7bf
Autor:
Haidar Hosamo Hosamo, Aksa Imran, Juan Cardenas-Cartagena, Paul Ragnar Svennevig, Kjeld Svidt, Henrik Kofoed Nielsen
Publikováno v:
Advances in Civil Engineering, Vol 2022 (2022)
The Architecture, Engineering, Construction, and Facility Management (AEC-FM) industry is increasingly affected by digital technologies that monitor sensor network data and control automation systems. Advances in digital technologies like Digital Twi
Externí odkaz:
https://doaj.org/article/d1119d4a4f1f439a8a7c21deb7f9da87
Autor:
Haidar Hosamo Hosamo, Henrik Kofoed Nielsen, Dimitrios Kraniotis, Paul Ragnar Svennevig, Kjeld Svidt
Publikováno v:
Hosamo, H H, Nielsen, H K, Kraniotis, D, Svennevig, P R & Svidt, K 2023, ' Improving building occupant comfort through a digital twin approach : A Bayesian network model and predictive maintenance method ', Energy and Buildings, vol. 288, 112992 . https://doi.org/10.1016/j.enbuild.2023.112992
This study introduces a Bayesian network model to evaluate the comfort levels of occupants of two non-residential Norwegian buildings based on data collected from satisfaction surveys and building performance parameters. A Digital Twin approach is pr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1a7eb5d531980fe0439a7c7d076d7076
https://vbn.aau.dk/da/publications/db4593fc-a19f-4f31-8ee3-739dd725f9fa
https://vbn.aau.dk/da/publications/db4593fc-a19f-4f31-8ee3-739dd725f9fa
Autor:
Haidar Hosamo Hosamo, Henrik Kofoed Nielsen, Dimitrios Kraniotis, Paul Ragnar Svennevig, Kjeld Svidt
Publikováno v:
Hosamo, H H, Nielsen, H K, Kraniotis, D, Svennevig, P R & Svidt, K 2023, ' Digital Twin framework for automated fault source detection and prediction for comfort performance evaluation of existing non-residential Norwegian buildings ', Energy and Buildings, vol. 281, 112732 . https://doi.org/10.1016/j.enbuild.2022.112732
Energy and Buildings
Energy and Buildings
Numerous buildings fall short of expectations regarding occupant satisfaction, sustainability, or energy efficiency. In this paper, the performance of buildings in terms of occupant comfort is evaluated using a probabilistic model based on Bayesian n
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9e7e79b46102a78e8e22cd896bf42157
https://vbn.aau.dk/da/publications/7afd35be-3f95-4f0f-8abb-8d364f2e9105
https://vbn.aau.dk/da/publications/7afd35be-3f95-4f0f-8abb-8d364f2e9105
Autor:
Haidar Hosamo Hosamo, Merethe Solvang Tingstveit, Henrik Kofoed Nielsen, Paul Ragnar Svennevig, Kjeld Svidt
Publikováno v:
Hosamo, H H, Tingstveit, M S, Nielsen, H K, Svennevig, P R & Svidt, K 2022, ' Multiobjective optimization of building energy consumption and thermal comfort based on integrated BIM framework with machine learning-NSGA II ', Energy and Buildings, vol. 277, 112479 . https://doi.org/10.1016/j.enbuild.2022.112479
Energy and Buildings
Energy and Buildings
Detailed parametric analysis and measurements are required to reduce building energy usage while maintaining acceptable thermal conditions. This research suggested a system that combines Building Information Modeling (BIM), machine learning, and the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::53eca25ff4eed11cc8c7b446b6cad663
https://vbn.aau.dk/ws/files/502995517/1_s2.0_S0378778822006508_main.pdf
https://vbn.aau.dk/ws/files/502995517/1_s2.0_S0378778822006508_main.pdf
Publikováno v:
Energy and Buildings
Hosamo, H, Svennevig, P R, Svidt, K, Han, D & Nielsen, H K 2022, ' A Digital Twin predictive maintenance framework of air handling units based on automatic fault detection and diagnostics ', Energy and Buildings, vol. 261, 111988 . https://doi.org/10.1016/j.enbuild.2022.111988
Hosamo, H, Svennevig, P R, Svidt, K, Han, D & Nielsen, H K 2022, ' A Digital Twin predictive maintenance framework of air handling units based on automatic fault detection and diagnostics ', Energy and Buildings, vol. 261, 111988 . https://doi.org/10.1016/j.enbuild.2022.111988
The building industry consumes the most energy globally, making it a priority in energy efficiency initiatives. Heating, ventilation, and air conditioning (HVAC) systems create the heart of buildings. Stable air handling unit (AHU) functioning is vit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cea6698218c357770a2ff432055ea5fb
https://hdl.handle.net/11250/3062826
https://hdl.handle.net/11250/3062826