Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Haidar, Ghulam"'
Autor:
Asif, Tauseef, Haidar, Ghulam, Yousafzai, Faisal, Khan, Murad Ul Islam, Khan, Qaisar, Fatima, Rakea
A resolving set for a simple graph $G$ is a subset of vertex set of $G$ such that it distinguishes all vertices of $G$ using the shortest distance from this subset. This subset is a metric basis if it is the smallest set with this property. A resolvi
Externí odkaz:
http://arxiv.org/abs/2409.12199
Autor:
Wang, Muwen, Haidar, Ghulam, Yousafzai, Faisal, Khan, Murad Ul Islam, Sikandar, Waseem, Khan, Asad Ul Islam
Metric dimensions and metric basis are graph invariants studied for their use in locating and indexing nodes in a graph. It was recently established that for bicyclic graph of type-III ($\Theta $-graphs), the metric dimension is $3$ only, when all pa
Externí odkaz:
http://arxiv.org/abs/2409.02947
Publikováno v:
In Geoderma 1 April 2022 411
Autor:
Zhang, Chuanjun1 (AUTHOR), Haidar, Ghulam2 (AUTHOR), Khan, Murad Ul Islam2 (AUTHOR), Yousafzai, Faisal3 (AUTHOR), Hila, Kostaq4 (AUTHOR) k.hila@fimif.edu.al, Khan, Asad Ul Islam5 (AUTHOR)
Publikováno v:
Symmetry (20738994). Mar2023, Vol. 15 Issue 3, p708. 14p.
Autor:
Khan, Asad1 (AUTHOR), Haidar, Ghulam2 (AUTHOR), Abbas, Naeem2 (AUTHOR), Khan, Murad Ul Islam2 (AUTHOR) muradulislam@uoh.edu.pk, Niazi, Azmat Ullah Khan3 (AUTHOR), Khan, Asad Ul Islam4 (AUTHOR)
Publikováno v:
Mathematics (2227-7390). Feb2023, Vol. 11 Issue 4, p869. 17p.