Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Hai-liang Wu"'
Autor:
Hai-Liang Wu, Li-Yuan Wang
Publikováno v:
Electronic Research Archive, Vol 30, Iss 6, Pp 2109-2120 (2022)
Let $ p $ be an odd prime and let $ \mathbb{F}_p $ be the finite field of $ p $ elements. In 2019, Sun studied some permutations involving squares in $ \mathbb{F}_p $. In this paper, by the theory of local fields we generalize this topic to $ \mathbb
Externí odkaz:
https://doaj.org/article/13ee69b574ef411284115c23dcedc950
Publikováno v:
The Ramanujan Journal. 60:751-759
Autor:
Hai-Liang Wu, Yue-Feng She
Publikováno v:
International Journal of Number Theory. 18:1749-1763
Let $p>3$ be a prime. Gauss first introduced the polynomial $S_p(x)=\prod_{c}(x-\zeta_p^c),$ where $0
Comment: 15 pages
Comment: 15 pages
Autor:
HAI-LIANG WU, LI-YUAN WANG
Publikováno v:
Bulletin of the Australian Mathematical Society. 106:243-253
We use circulant matrices and hyperelliptic curves over finite fields to study some arithmetic properties of certain determinants involving Legendre symbols and kth power residues.
Autor:
Li Yuan Wang, Hai Liang Wu
Publikováno v:
The Ramanujan Journal. 58:43-56
The evaluation of determinants with Legendre symbol entries is a classical topic both in number theory and in linear algebra. Recently Sun posed some conjectures on this topic. In this paper we confirm some of them via Gauss sums and the matrix deter
Publikováno v:
Transactions of the American Mathematical Society. 374:7925-7944
In 2013, Farhi conjectured that for each $m\geq 3$, every natural number $n$ can be represented as $\lfloor x^2/m\rfloor+\lfloor y^2/m\rfloor+\lfloor z^2/m\rfloor$ with $x,y,z\in\Z$, where $\lfloor\cdot\rfloor$ denotes the floor function. Moreover, i
Autor:
Hai-Liang Wu, Zhi-Wei Sun
Publikováno v:
Acta Arithmetica. 193:253-268
The 1-3-5 conjecture of Z.-W. Sun states that any $n\in\mathbb N=\{0,1,2,\ldots\}$ can be written as $x^2+y^2+z^2+w^2$ with $w,x,y,z\in\mathbb N$ such that $x+3y+5z$ is a square. In this paper, via the theory of ternary quadratic forms and related mo
Autor:
Hai Liang Wu, Li Yuan Wang
Publikováno v:
Bulletin of the Australian Mathematical Society. 100:362-371
Let $n$ be a positive integer and $a$ an integer prime to $n$. Multiplication by $a$ induces a permutation over $\mathbb{Z}/n\mathbb{Z}=\{\overline{0},\overline{1},\ldots ,\overline{n-1}\}$. Lerch’s theorem gives the sign of this permutation. We ex
Autor:
HAI-LIANG WU, YUE-FENG SHE
Let $p=3n+1$ be a prime with $n\in\mathbb{N}=\{0,1,\cdots\}$, and let $g\in\mathbb{Z}$ be a primitive root modulo $p$. Let $0
Comment: 9 pages
Comment: 9 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::43fed26b4431af9af2db7581cb67316d
http://arxiv.org/abs/2105.09822
http://arxiv.org/abs/2105.09822
Let $��_{n}(q)$ denote the $n$-th cyclotomic polynomial in $q$. Recently, Guo and Schlosser [Constr. Approx. 53 (2021), 155--200] put forward the following conjecture: for an odd integer $n>1$, \begin{align*} &\sum_{k=0}^{n-1}[8k-1]\frac{(q^{-1};
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d02e7db489f76a55bcb249f97fa14424