Zobrazeno 1 - 10
of 382
pro vyhledávání: '"Hagmar P"'
Deep reinforcement learning (DRL) is a machine learning-based method suited for complex and high-dimensional control problems. In this study, a real-time control system based on DRL is developed for long-term voltage stability events. The possibility
Externí odkaz:
http://arxiv.org/abs/2207.04240
The post-contingency loadability limit (PCLL) and the secure operating limit (SOL) are the two main approaches used in computing the security margins of an electric power system. While the SOL is significantly more computationally demanding than the
Externí odkaz:
http://arxiv.org/abs/2012.00336
This paper develops a new method for voltage instability prediction using a recurrent neural network with long short-term memory. The method is aimed to be used as a supplementary warning system for system operators, capable of assessing whether the
Externí odkaz:
http://arxiv.org/abs/1908.05554
Publikováno v:
Energy and AI, Vol 13, Iss , Pp 100244- (2023)
This paper develops a real-time control method based on deep reinforcement learning aimed to determine the optimal control actions to maintain a sufficient secure operating limit. The secure operating limit refers to the limit to the most stressed pr
Externí odkaz:
https://doaj.org/article/8a1291b252db45fa9aedbafdfb434be4
Publikováno v:
IET Smart Grid (2020)
This study develops a machine learning-based method for a fast estimation of the dynamic voltage security margin (DVSM). The DVSM can incorporate the dynamic system response following a disturbance and it generally provides a better measure of securi
Externí odkaz:
https://doaj.org/article/5ab42473db354deb953bfea60ed83ec1
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Wojtyniak Bogdan J, Rabczenko Daniel, Jönsson Bo AG, Zvezday Valentyna, Pedersen Henning S, Rylander Lars, Toft Gunnar, Ludwicki Jan K, Góralczyk Katarzyna, Lesovaya Anna, Hagmar Lars, Bonde Jens
Publikováno v:
Environmental Health, Vol 9, Iss 1, p 56 (2010)
Abstract Background Epidemiological studies on the association between maternal exposure to persistent organic pollutants (POPs) and fetal growth alteration report inconsistent findings which weights in favor of additional studies. Methods Blood samp
Externí odkaz:
https://doaj.org/article/d7c7de1408094cada3ab5fc1a34314a7
Autor:
Zvyezday Valentyna, Pedersen Henning S, Toft Gunnar, Spanò Marcello, Bizzaro Davide, Manicardi Gian-Carlo, Giwercman Aleksander, Hagmar Lars, Lindh Christian H, Andersen Birgitte S, Long Manhai, Bonde Jens, Bonefeld-Jorgensen Eva C
Publikováno v:
Environmental Health, Vol 5, Iss 1, p 14 (2006)
Abstract Background Persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins/furans, polychlorinated biphenyls (PCBs) and organochlorine pesticides can cause a series of adverse effects on e.g. reproduction in animals and humans
Externí odkaz:
https://doaj.org/article/723a151450fa4e109d1c7bb20c834ccc
Autor:
Manicardi Gian-Carlo, Erlandsen Mogens, Giwercman Aleksander, Hagmar Lars, Lesovoy Vladimir, Lindh Christian H, Andersen Birgitte S, Reinert Thayaline S, Hjelmborg Philip S, Bonefeld-Jorgensen Eva C, Spanò Marcello, Toft Gunnar, Bonde Jens
Publikováno v:
Environmental Health, Vol 5, Iss 1, p 12 (2006)
Abstract Background Human exposure to persistent organic pollutants (POPs) is ubiquitous and found in all individuals. Studies have documented endocrine disrupting effects and impact on reproduction. The aim of the present study was to compare the le
Externí odkaz:
https://doaj.org/article/5e78275937ae4998991c38041bc5990e