Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Hagger, Raffael"'
Autor:
Fulsche, Robert, Hagger, Raffael
We develop the quantum harmonic analysis framework in the reducible setting and apply our findings to polyanalytic Fock spaces. In particular, we explain some phenomena observed in arXiv:2201.10230 and answer a few related open questions. For instanc
Externí odkaz:
http://arxiv.org/abs/2308.11292
We say that $\Gamma$, the boundary of a bounded Lipschitz domain, is locally dilation invariant if, at each $x\in \Gamma$, $\Gamma$ is either locally $C^1$ or locally coincides (in some coordinate system centred at $x$) with a Lipschitz graph $\Gamma
Externí odkaz:
http://arxiv.org/abs/2301.12208
Autor:
Hagger, Raffael
We give a characterization of compact and Fredholm operators on polyanalytic Fock spaces in terms of limit operators. As an application we obtain a generalization of the Bauer-Isralowitz theorem using a matrix valued Berezin type transform. We then a
Externí odkaz:
http://arxiv.org/abs/2201.10230
We study the boundedness of Toeplitz operators $T_\psi$ with locally integrable symbols on weighted harmonic Bergman spaces over the unit ball of $\mathbb{R}^n$. Generalizing earlier results for analytic function spaces, we derive a general sufficien
Externí odkaz:
http://arxiv.org/abs/2011.04699
We show that an infinite Toeplitz+Hankel matrix $T(\varphi) + H(\psi)$ generates a bounded (compact) operator on $\ell^p(\mathbb{N}_0)$ with $1\leq p\leq \infty$ if and only if both $T(\varphi)$ and $H(\psi)$ are bounded (compact). We also give analo
Externí odkaz:
http://arxiv.org/abs/2007.04744
Autor:
Hagger, Raffael
In this paper we study the Toeplitz algebra, which is generated by Toeplitz operators with bounded symbols on the Fock space $F^p_{\alpha}$. We show that the Toeplitz algebra coincides with each of the algebras generated by band-dominated, sufficient
Externí odkaz:
http://arxiv.org/abs/2002.02344
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Hagger, Raffael, Seifert, Christian
Publikováno v:
Journal of Mathematical Analysis and Applications 2020
We study band-dominated operators on (subspaces of) $L_p$-spaces over metric measure spaces of bounded geometry satisfying an additional property. We single out core assumptions to obtain, in an abstract setting, definitions of limit operators, chara
Externí odkaz:
http://arxiv.org/abs/1908.01985
Autor:
Hagger, Raffael, Virtanen, Jani
We discuss the compactness of Hankel operators on Hardy, Bergman and Fock spaces with focus on the differences between the three cases, and complete the theory of compact Hankel operators with bounded symbols on the latter two spaces with standard we
Externí odkaz:
http://arxiv.org/abs/1906.09901
Autor:
Hagger, Raffael
We study the asymptotic expansion of the product of two Toeplitz operators on the Fock space. In comparison to earlier results we require significantly less derivatives and get the expansion to arbitrary order. This, in particular, improves a result
Externí odkaz:
http://arxiv.org/abs/1808.10376