Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Hafner, Elena S."'
The Alexander polynomial (1928) is the first polynomial invariant of links devised to help distinguish links up to isotopy. In recent work of the authors, Fox's conjecture (1962) -- stating that the absolute values of the coefficients of the Alexande
Externí odkaz:
http://arxiv.org/abs/2401.14927
We introduce bubbling diagrams and show that they compute the support of the Grothendieck polynomial of any vexillary permutation. Using these diagrams, we show that the support of the top homogeneous component of such a Grothendieck polynomial coinc
Externí odkaz:
http://arxiv.org/abs/2306.08597
The central question of knot theory is that of distinguishing links up to isotopy. The first polynomial invariant of links devised to help answer this question was the Alexander polynomial (1928). Almost a century after its introduction, it still pre
Externí odkaz:
http://arxiv.org/abs/2303.04733
Autor:
Hafner, Elena S.
Recent work of Pechenik, Speyer, and Weigandt proved a formula for the degree of any Grothendieck polynomial. A distinct formula for the degree of vexillary Grothendieck polynomials was proven by Rajchgot, Robichaux, and Weigandt. We give a new proof
Externí odkaz:
http://arxiv.org/abs/2201.12432
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
SIAM Journal on Discrete Mathematics; 2024, Vol. 38 Issue 3, p2194-2225, 32p
Autor:
Karasik, Rona J., Hafner, Elena S.
Publikováno v:
Journal of Community Engagement & Scholarship; 2021, Vol. 14 Issue 1, p1-16, 16p