Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Hadjimichael, Yiannis"'
Autor:
Hadjimichael, Yiannis
A plethora of physical phenomena are modelled by hyperbolic partial differential equations, for which the exact solution is usually not known. Numerical methods are employed to approximate the solution to hyperbolic problems; however, in many cases i
Externí odkaz:
http://hdl.handle.net/10754/625526
We analyze, from the viewpoint of positivity preservation, certain discretizations of a fundamental partial differential equation, the one-dimensional advection equation with periodic boundary condition. The full discretization is obtained by couplin
Externí odkaz:
http://arxiv.org/abs/2105.07403
Autor:
Takács, Bálint, Hadjimichael, Yiannis
Publikováno v:
Math. Comput. Simulation 198 (2022), pp. 211-236
In this paper, an epidemic model with spatial dependence is studied and results regarding its stability and numerical approximation are presented. We consider a generalization of the original Kermack and McKendrick model in which the size of the popu
Externí odkaz:
http://arxiv.org/abs/1909.01330
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Math. Comp. 87 (2018), 2295-2320
The analysis of strong-stability-preserving (SSP) linear multistep methods is extended to semi-discretized problems for which different terms on the right-hand side satisfy different forward Euler (or circle) conditions. Optimal additive and perturbe
Externí odkaz:
http://arxiv.org/abs/1601.03637
Publikováno v:
SIAM J. Numer. Anal. 54-5 (2016), pp. 2799-2832
Strong stability preserving (SSP) methods are designed primarily for time integration of nonlinear hyperbolic PDEs, for which the permissible SSP step size varies from one step to the next. We develop the first SSP linear multistep methods (of order
Externí odkaz:
http://arxiv.org/abs/1504.04107
Publikováno v:
SIAM J. Numer. Anal. 51-4 (2013), pp. 2149-2165
We apply the concept of effective order to strong stability preserving (SSP) explicit Runge-Kutta methods. Relative to classical Runge-Kutta methods, methods with an effective order of accuracy are designed to satisfy a relaxed set of order condition
Externí odkaz:
http://arxiv.org/abs/1207.2902
Publikováno v:
Mathematics of Computation, 2018 Sep 01. 87(313), 2295-2320.
Externí odkaz:
https://www.jstor.org/stable/90021987
Publikováno v:
SIAM Journal on Numerical Analysis, 2016 Jan 01. 54(5), 2799-2832.
Externí odkaz:
http://www.jstor.org/stable/26154759
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.