Zobrazeno 1 - 10
of 86
pro vyhledávání: '"Hadiji Rejeb"'
Publikováno v:
Advances in Nonlinear Analysis, Vol 12, Iss 1, Pp 123-148 (2023)
We study the asymptotic behavior of solutions for nn-component Ginzburg-Landau equations as ε→0\varepsilon \to 0. We prove that the minimizers converge locally in any Ck{C}^{k}-norm to a solution of a system of generalized harmonic map equations.
Externí odkaz:
https://doaj.org/article/4c47698dad574c2fb7ba4b4b0ddcea96
Autor:
Benhafsia, Sana, Hadiji, Rejeb
Recently, a great attention has been focused on the study of fractional and nonlocal operators of elliptic type, both for the pure mathematical research and in view of concrete real-world applications. We consider the following nonlocal problem on $\
Externí odkaz:
http://arxiv.org/abs/2404.07531
In this paper, we are concerned with $n$-component Ginzburg-Landau equations on $\rtwo$.By introducing a diffusion constant for each component, we discuss that the $n$-component equations are different from $n$-copies of the single Ginzburg-Landau eq
Externí odkaz:
http://arxiv.org/abs/2401.01082
We study the asymptotic behavior of solutions for $n$-component Ginzburg-Landau equations as $\ve \to 0$. We prove that the minimizers converges locally in any $C^k$-norm to a solution of a system of generalized harmonic map equations.
Externí odkaz:
http://arxiv.org/abs/2205.14684
Autor:
Benhamida, Asma, Hadiji, Rejeb
In this paper, we investigate the minimization problem : $$ \inf_{ \displaystyle{\begin{array}{lll} u \in H_0^1(\Omega), v \in H_0^1(\Omega),\\ \quad \| u \|_{L^{q}} =1, \quad \| v \|_{L^{q}} = 1 \end{array}}} \left[ \frac{1}{2} \int_{\Omega} a(x) \v
Externí odkaz:
http://arxiv.org/abs/2110.14640
Autor:
Hadiji, Rejeb
We consider the problem: $$\inf_{{u}\in {H}^{1}_{g}(\Omega),\|u\|_{q}=1} \int_{\Omega}{p(x)}|\nabla{u(x)}|^{2}dx-\lambda\int_{\Omega}| u(x)|^{2}dx$$ where $\Omega$ is a bounded domain in $\R^{n}$, ${n}\geq{4}$, $ p : \bar{\Omega}\longrightarrow \R$ i
Externí odkaz:
http://arxiv.org/abs/1804.06476
Autor:
Hadiji, Rejeb, Perugia, Carmen
In this paper, we study the asymptotic behaviour of minimizing solutions of a Ginzburg-Landau type functional with a positive weight and with convex potential near $0$ and we estimate the energy in this case. We also generalize a lower bound for the
Externí odkaz:
http://arxiv.org/abs/1802.01915
Autor:
Hadiji, Rejeb, Vigneron, Francois
We study the non-linear minimization problem on $H^1_0(\Omega)\subset L^q$ with $q=\frac{2n}{n-2}$, $\alpha>0$ and $n\geq4$~: \[\inf_{\substack{u\in H^1_0(\Omega) \|u\|_{L^q}=1}}\int_\Omega a(x,u)|\nabla u|^2 - \lambda \int_{\Omega} |u|^2.\] where $a
Externí odkaz:
http://arxiv.org/abs/1710.05653
We study the minimizing problem $\inf\left\{\displaystyle\int_{\Omega}p(x)|\nabla u|^{2}dx,\,u\in H^{1}_{0}(\Omega),\,\|u\|_{L^{\frac{2N}{N-2}}(\Omega)}=1\right\}$ where $\Omega$ is a smooth bounded domain of $\R^{N}$, $N\geq 3$ and $p$ a positive di
Externí odkaz:
http://arxiv.org/abs/1405.7734
Autor:
Gaudiello, Antonio, Hadiji, Rejeb
In this paper, starting from the classical 3D non-convex and nonlocal micromagnetic energy for ferromagnetic materials, we determine, via an asymptotic analysis, the free energy of a multi-structure consisting of a nano-wire in junction with a thin f
Externí odkaz:
http://arxiv.org/abs/1402.7221