Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Haddadin, Ward"'
Predicting protein-ligand binding affinity is an essential part of computer-aided drug design. However, generalisable and performant global binding affinity models remain elusive, particularly in low data regimes. Despite the evolution of model archi
Externí odkaz:
http://arxiv.org/abs/2409.12995
Autor:
Haddadin, Ward
We present an application of invariant polynomials in machine learning. Using the methods developed in previous work, we obtain two types of generators of the Lorentz- and permutation-invariant polynomials in particle momenta; minimal algebra generat
Externí odkaz:
http://arxiv.org/abs/2104.12733
Publikováno v:
International Journal of Modern Physics, Volume No. 37, Issue No. 16, Article No. 2250093, Year 2022
Comparisons of the positive and negative halves of the distributions of parity-odd event variables in particle-physics experimental data can provide sensitivity to sources of non-standard parity violation. Such techniques benefit from lacking first-o
Externí odkaz:
http://arxiv.org/abs/2008.05206
Two theorems of Weyl tell us that the algebra of Lorentz- (and parity-) invariant polynomials in the momenta of $n$ particles are generated by the dot products and that the redundancies which arise when $n$ exceeds the spacetime dimension $d$ are gen
Externí odkaz:
http://arxiv.org/abs/2007.05746
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Haddadin, Ward Issa Jereis
In this thesis, we demonstrate the benefit of incorporating our knowledge of the symmetries of certain systems into the machine learning methods used to model them. By borrowing the necessary tools from commutative algebra and invariant theory, we co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::178915adac214bd99d3297259cd2731e
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
A theorem of Weyl tells us that the Lorentz (and parity) invariant polynomials in the momenta of $n$ particles are generated by the dot products. We extend this result to include the action of an arbitrary permutation group $P \subset S_n$ on the par
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5454d8c227d9abea880c644bd72b8c6d
https://www.repository.cam.ac.uk/handle/1810/319036
https://www.repository.cam.ac.uk/handle/1810/319036