Zobrazeno 1 - 10
of 483
pro vyhledávání: '"Hadamard fractional derivative"'
Autor:
M.H. Heydari, M. Razzaghi
Publikováno v:
Alexandria Engineering Journal, Vol 107, Iss , Pp 73-86 (2024)
In this work, the Caputo-type Hadamard fractional derivative is utilized to introduce a coupled system of time fractional Klein–Gordon-Schrödinger equations. The classical and shifted Jacobi polynomials are simultaneously applied to make a numeric
Externí odkaz:
https://doaj.org/article/d727073bdae1449f8d2a1e4906b33b12
Publikováno v:
Fixed Point Theory and Algorithms for Sciences and Engineering, Vol 2024, Iss 1, Pp 1-19 (2024)
Abstract In our present work, we study a coupled system of Caputo–Hadamard fractional differential equations supplemented with a novel set of initial value conditions involving the η = ( t d d t ) $\eta =(t\frac{d}{dt})$ derivatives. We provided s
Externí odkaz:
https://doaj.org/article/0b0883bae4ba48d6ae1c4807c5c335c3
Publikováno v:
AIMS Mathematics, Vol 9, Iss 10, Pp 28741-28764 (2024)
This paper explores a fractional integro-differential equation with boundary conditions that incorporate the Hilfer-Hadamard fractional derivative. We model the RLC circuit using fractional calculus and define weighted spaces of continuous functions.
Externí odkaz:
https://doaj.org/article/6139d0c54a06434f966785bf2e106c45
Publikováno v:
AIMS Mathematics, Vol 9, Iss 9, Pp 25849-25878 (2024)
In this paper, we study the existence and uniqueness of solutions for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point Riemann-Liouville fractional integral boundary conditions via standard fixed point
Externí odkaz:
https://doaj.org/article/25e5bbc8d4d043e686386817647277b7
Publikováno v:
Results in Physics, Vol 67, Iss , Pp 108055- (2024)
In this study, the Caputo–Hadamard derivative is fittingly used to define a fractional form of the Rosenau–Hyman equation. To solve this equation, the orthonormal logarithmic Bernstein functions (BFs) are created as a suitable basis for handling
Externí odkaz:
https://doaj.org/article/3755ebe267b1440d91898a1fee71eb12
Autor:
Zhengang Zhao, Yunying Zheng
Publikováno v:
Mathematics, Vol 12, Iss 23, p 3786 (2024)
In this paper, we study the Caputo–Hadamard time-space fractional diffusion equation, where the Caputo derivative is defined in the temporal direction and the Hadamard derivative is defined in the spatial direction separately. We first use the Lapl
Externí odkaz:
https://doaj.org/article/65f4cb96145a46b7b0aeb1512e1adf41
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Fractal and Fractional, Vol 8, Iss 6, p 326 (2024)
This work explores the existence and uniqueness criteria for the solution of hybrid Caputo–Hadamard fractional sequential differential equations (HCHFSDEs) by employing Darbo’s fixed-point theorem. Fractional differential equations play a pivotal
Externí odkaz:
https://doaj.org/article/9083080988bc48828bc7c3a2666b539a
Publikováno v:
Fractal and Fractional, Vol 8, Iss 4, p 219 (2024)
We investigate a class of boundary value problems (BVPs) involving an impulsive fractional integro-differential equation (IF-IDE) with the Caputo–Hadamard fractional derivative (C-HFD). We employ some fixed-point theorems (FPTs) to study the existe
Externí odkaz:
https://doaj.org/article/0c7aaedecccb47b9a71b505e470492a7
Autor:
Martin Bohner, Alexander Domoshnitsky, Elena Litsyn, Seshadev Padhi, Satyam Narayan Srivastava
Publikováno v:
Applied Mathematics in Science and Engineering, Vol 31, Iss 1 (2023)
We propose necessary and sufficient conditions for the negativity of the two-point boundary value problem in the form of the Vallée-Poussin theorem about differential inequalities for the Hadamard fractional functional differential problem \[ \begin
Externí odkaz:
https://doaj.org/article/4d0854e49600479292b4132c38687f29