Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Hached, Mustapha"'
The Singular Value Decomposition (SVD) of matrices is a widely used tool in scientific computing. In many applications of machine learning, data analysis, signal and image processing, the large datasets are structured into tensors, for which generali
Externí odkaz:
http://arxiv.org/abs/2311.03109
Face recognition and identification is a very important application in machine learning. Due to the increasing amount of available data, traditional approaches based on matricization and matrix PCA methods can be difficult to implement. Moreover, the
Externí odkaz:
http://arxiv.org/abs/2105.06924
In the present paper, we consider large-scale continuous-time differential matrix Riccati equations having low rank right-hand sides. These equations are generally solved by Backward Differentiation Formula (BDF) or Rosenbrock methods leading to a la
Externí odkaz:
http://arxiv.org/abs/1612.00499
Autor:
Hached, Mustapha
Cette thèse porte sur des méthode de résolution d'équations matricielles appliquées à la résolution numérique d'équations aux dérivées partielles ou des problèmes de contrôle linéaire. On s'intéressen en premier lieu à des équations
Externí odkaz:
http://www.theses.fr/2012DUNK0315/document
Publikováno v:
New Trends in Mathematical Sciences. 2016, Vol. 4 Issue 2, p227-239. 13p.
Autor:
Angelova, Vera1 (AUTHOR) vera.angelova@iict.bas.bg, Hached, Mustapha2 (AUTHOR) mustapha.hached@univ-lille.fr, Jbilou, Khalide3 (AUTHOR) jbilou@univ-littoral.fr, Gemignani, Luca (AUTHOR)
Publikováno v:
Mathematics (2227-7390). Apr2021, Vol. 9 Issue 8, p855. 1p.
Autor:
Hached, Mustapha
Publikováno v:
Mathématiques générales [math.GM]. Université du Littoral Côte d'Opale, 2012. Français. ⟨NNT : 2012DUNK0315⟩
This thesis deals with some matrix equations involved in numerical resolution of partial differential equations and linear control. We first consider some numerical resolution techniques of linear matrix equation. In the second part of this thesis, w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::9c88c0cf5d9d32651f54008cfc3857e2
https://tel.archives-ouvertes.fr/tel-00919796/document
https://tel.archives-ouvertes.fr/tel-00919796/document