Zobrazeno 1 - 10
of 79
pro vyhledávání: '"Habib Maagli"'
Publikováno v:
Electronic Journal of Differential Equations, Vol 2018, Iss 137,, Pp 1-14 (2018)
In this article, we study the existence, uniqueness and the asymptotic behavior of a positive classical solution to the semilinear boundary value problem $$\displaylines{ -\Delta u=a(x)u^{\sigma }\quad \text{in }D, \cr u|_{\partial D}=0,\quad \li
Externí odkaz:
https://doaj.org/article/33fcbe86cb8246ecb3593a65301f9cc9
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2017, Iss 94, Pp 1-19 (2017)
We consider the following semilinear problem \begin{equation*} \begin{cases} -\Delta u(x)=a(x)u^{\sigma }(x),\text{ }x\in \Omega \backslash \{0\}\text{ (in the distributional sense),} \\ u>0,\text{ in }\Omega \backslash \{0\},\\ \underset{\left\vert
Externí odkaz:
https://doaj.org/article/f2afda9181584324b2be6c9ba4eca8d3
Publikováno v:
Electronic Journal of Differential Equations, Vol 2017, Iss 240,, Pp 1-16 (2017)
Using a perturbation argument, we establish the existence and uniqueness of a positive continuous solution for the following superlinear Riemann-Liouville fractional boundary-value problem $$\displaylines{ D^{\alpha }u( x) -u(x)\varphi (x,u(x))=0
Externí odkaz:
https://doaj.org/article/c0cf52e705e4432080f362efeb964204
Publikováno v:
Electronic Journal of Differential Equations, Vol 2017, Iss 223,, Pp 1-12 (2017)
In this article, we are concerned with a class of nonlinear partial differential elliptic equations with Dirichlet boundary data. The key feature of this paper consists in competition effects of two generalized differential operators, which extend
Externí odkaz:
https://doaj.org/article/5ed6912613f7455aa26988337210df5f
Autor:
Habib Maagli, Abdelwaheb Dhifli
Publikováno v:
Electronic Journal of Differential Equations, Vol 2017, Iss 141,, Pp 1-13 (2017)
We study the existence, uniqueness, and asymptotic behavior of positive continuous solutions to the fractional Navier boundary-value problem $$\displaylines{ D^{\beta }(D^{\alpha }u)(x)=-p(x)u^{\sigma },\quad \in (0,1), \cr \lim_{x\to 0}x^{1-\be
Externí odkaz:
https://doaj.org/article/1a7279a89ced4d9495904838f1c819a1
Autor:
Imed Bachar, Habib Maagli
Publikováno v:
Electronic Journal of Differential Equations, Vol 2016, Iss 108,, Pp 1-15 (2016)
In this article, we study the superlinear fractional boundary-value problem $$\displaylines{ D^{\alpha }u(x) =u(x)g(x,u(x)),\quad 00$. The function $g(x,u)\in C((0,1)\times [ 0,\infty ),[0,\infty))$ that may be singular at x=0 and x=1 is require
Externí odkaz:
https://doaj.org/article/1750b139a91443aca6a34e6d619b2e03
Publikováno v:
Electronic Journal of Differential Equations, Vol 2016, Iss 49,, Pp 1-14 (2016)
In this article, we give an exact behavior at infinity of the unique solution to the following singular boundary value problem $$\displaylines{ -\frac{1}{A}(Au')'=q(t)g(u), \quad t \in (0,\infty), \cr u>0, \quad \lim_{t\to 0}A(t)u'(t)=0, \quad \l
Externí odkaz:
https://doaj.org/article/56731a708cd441269fbf4e2132030da2
Autor:
Imed Bachar, Habib Maagli
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2015, Iss 37, Pp 1-15 (2015)
In this paper, we give the exact asymptotic behavior of the unique positive solution to the following singular boundary value problem \begin{equation*} \begin{cases} -\frac{1}{A}(Au^{\prime })^{\prime }=p(x)g(u),\quad x\in (0,1), \\ u>0,\quad \text{i
Externí odkaz:
https://doaj.org/article/b2a9415c138d4cc085377f7c34e6cf77
Positive bounded solutions for semilinear elliptic systems with indefinite weights in the half-space
Publikováno v:
Electronic Journal of Differential Equations, Vol 2015, Iss 177,, Pp 1-8 (2015)
In this article, we study the existence and nonexistence of positive bounded solutions of the Dirichlet problem $$\displaylines{ -\Delta u=\lambda p(x)f(u,v),\quad \text{in } {\mathbb{R}}_+^n,\cr -\Delta v=\lambda q(x)g(u,v), \quad \text{in } {\m
Externí odkaz:
https://doaj.org/article/c4068189e796480b8d8f19b466e86b0b
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2015, Iss 28, Pp 1-15 (2015)
We are interested in the asymptotic analysis of singular solutions with blow-up boundary for a class of quasilinear logistic equations with indefinite potential. Under natural assumptions, we study the competition between the growth of the variable w
Externí odkaz:
https://doaj.org/article/39962309f4b043a8921126384dc65cb4