Zobrazeno 1 - 10
of 41
pro vyhledávání: '"Habib Màagli"'
Publikováno v:
Opuscula Mathematica, Vol 42, Iss 6, Pp 793-803 (2022)
In this paper, we obtain sufficient conditions for the existence of a unique nonnegative continuous solution of semipositone semilinear elliptic problem in bounded domains of \(\mathbb{R}^n\) (\(n\geq 2\)). The global behavior of this solution is als
Externí odkaz:
https://doaj.org/article/79e40bd99cef4137831e025fde508eea
Publikováno v:
Advances in Difference Equations, Vol 2021, Iss 1, Pp 1-11 (2021)
Abstract We deal with the following Riemann–Liouville fractional nonlinear boundary value problem: { D α v ( x ) + f ( x , v ( x ) ) = 0 , 2 < α ≤ 3 , x ∈ ( 0 , 1 ) , v ( 0 ) = v ′ ( 0 ) = v ( 1 ) = 0 . $$ \textstyle\begin{cases} \mathcal{D
Externí odkaz:
https://doaj.org/article/6e4ee7e2db0d467190825f520d100b00
Publikováno v:
Journal of Function Spaces, Vol 2021 (2021)
The paper deals with nonlinear elliptic differential equations subject to some boundary value conditions in a regular bounded punctured domain. By means of properties of slowly regularly varying functions at zero and the Schauder fixed-point theorem,
Externí odkaz:
https://doaj.org/article/fe9e0fe0b9ec4f3490ba699d003bea5a
Publikováno v:
Journal of Function Spaces, Vol 2021 (2021)
This paper deals with the following boundary value problem Dαut=ft,ut,t∈0,1,u0=u1=Dα−3u0=u′1=0, where 30, where ωt≔tα−21−t2.
Externí odkaz:
https://doaj.org/article/85b67eb7802c44138e44ffad87189550
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2017, Iss 94, Pp 1-19 (2017)
We consider the following semilinear problem \begin{equation*} \begin{cases} -\Delta u(x)=a(x)u^{\sigma }(x),\text{ }x\in \Omega \backslash \{0\}\text{ (in the distributional sense),} \\ u>0,\text{ in }\Omega \backslash \{0\},\\ \underset{\left\vert
Externí odkaz:
https://doaj.org/article/f2afda9181584324b2be6c9ba4eca8d3
Publikováno v:
Electronic Journal of Differential Equations, Vol 2017, Iss 223,, Pp 1-12 (2017)
In this article, we are concerned with a class of nonlinear partial differential elliptic equations with Dirichlet boundary data. The key feature of this paper consists in competition effects of two generalized differential operators, which extend
Externí odkaz:
https://doaj.org/article/5ed6912613f7455aa26988337210df5f
Autor:
Habib Maagli, Abdelwaheb Dhifli
Publikováno v:
Electronic Journal of Differential Equations, Vol 2017, Iss 141,, Pp 1-13 (2017)
We study the existence, uniqueness, and asymptotic behavior of positive continuous solutions to the fractional Navier boundary-value problem $$\displaylines{ D^{\beta }(D^{\alpha }u)(x)=-p(x)u^{\sigma },\quad \in (0,1), \cr \lim_{x\to 0}x^{1-\be
Externí odkaz:
https://doaj.org/article/1a7279a89ced4d9495904838f1c819a1
Autor:
Imed Bachar, Habib Maagli
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2015, Iss 37, Pp 1-15 (2015)
In this paper, we give the exact asymptotic behavior of the unique positive solution to the following singular boundary value problem \begin{equation*} \begin{cases} -\frac{1}{A}(Au^{\prime })^{\prime }=p(x)g(u),\quad x\in (0,1), \\ u>0,\quad \text{i
Externí odkaz:
https://doaj.org/article/b2a9415c138d4cc085377f7c34e6cf77
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2015, Iss 28, Pp 1-15 (2015)
We are interested in the asymptotic analysis of singular solutions with blow-up boundary for a class of quasilinear logistic equations with indefinite potential. Under natural assumptions, we study the competition between the growth of the variable w
Externí odkaz:
https://doaj.org/article/39962309f4b043a8921126384dc65cb4
Autor:
Habib Maagli, Abdelwaheb Dhifli
Publikováno v:
Electronic Journal of Differential Equations, Vol 2014, Iss 50,, Pp 1-7 (2014)
This concerns the existence of infinitely many positive solutions to the fractional differential equation $$\displaylines{ D^{\alpha }u(x)+f(x,u,D^{\alpha -1}u)=0, \quad x>0,\cr \lim_{x\to 0^{+}}u(x)=0, }$$ where $\alpha \in (1,2]$ and f is a B
Externí odkaz:
https://doaj.org/article/f55edc6e948b47fb999a0a6601e19b0a