Zobrazeno 1 - 10
of 52 222
pro vyhledávání: '"Haan A"'
Autor:
Chichura, P. M., Rahlin, A., Anderson, A. J., Ansarinejad, B., Archipley, M., Balkenhol, L., Benabed, K., Bender, A. N., Benson, B. A., Bianchini, F., Bleem, L. E., Bouchet, F. R., Bryant, L., Camphuis, E., Carlstrom, J. E., Chang, C. L., Chaubal, P., Chokshi, A., Chou, T. -L., Coerver, A., Crawford, T. M., Daley, C., de Haan, T., Dibert, K. R., Dobbs, M. A., Doohan, M., Doussot, A., Dutcher, D., Everett, W., Feng, C., Ferguson, K. R., Fichman, K., Foster, A., Galli, S., Gambrel, A. E., Gardner, R. W., Ge, F., Goeckner-Wald, N., Gualtieri, R., Guidi, F., Guns, S., Halverson, N. W., Hivon, E., Holder, G. P., Holzapfel, W. L., Hood, J. C., Hryciuk, A., Huang, N., Kéruzoré, F., Khalife, A. R., Kim, J., Knox, L., Korman, M., Kornoelje, K., Kuo, C. -L., Levy, K., Lowitz, A. E., Lu, C., Maniyar, A., Marrone, D. P., Martsen, E. S., Menanteau, F., Millea, M., Montgomery, J., Nakato, Y., Natoli, T., Noble, G. I., Omori, Y., Padin, S., Pan, Z., Paschos, P., Phadke, K. A., Pollak, A. W., Prabhu, K., Quan, W., Rahimi, M., Reichardt, C. L., Rouble, M., Ruhl, J. E., Schiappucci, E., Sobrin, J. A., Stark, A. A., Stephen, J., Tandoi, C., Thorne, B., Trendafilova, C., Umilta, C., Veitch-Michaelis, J., Vieira, J. D., Vitrier, A., Wan, Y., Whitehorn, N., Wu, W. L. K., Young, M. R., Zagorski, K., Zebrowski, J. A.
We present improvements to the pointing accuracy of the South Pole Telescope (SPT) using machine learning. The ability of the SPT to point accurately at the sky is limited by its structural imperfections, which are impacted by the extreme weather at
Externí odkaz:
http://arxiv.org/abs/2412.15167
Autor:
Bocquet, S., Grandis, S., Krause, E., To, C., Bleem, L. E., Klein, M., Mohr, J. J., Schrabback, T., Alarcon, A., Alves, O., Amon, A., Andrade-Oliveira, F., Baxter, E. J., Bechtol, K., Becker, M. R., Bernstein, G. M., Blazek, J., Camacho, H., Campos, A., Rosell, A. Carnero, Kind, M. Carrasco, Cawthon, R., Chang, C., Chen, R., Choi, A., Cordero, J., Crocce, M., Davis, C., DeRose, J., Diehl, H. T., Dodelson, S., Doux, C., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elsner, F., Elvin-Poole, J., Everett, S., Fang, X., Ferté, A., Fosalba, P., Friedrich, O., Frieman, J., Gatti, M., Giannini, G., Gruen, D., Gruendl, R. A., Harrison, I., Hartley, W. G., Herner, K., Huang, H., Huff, E. M., Huterer, D., Jarvis, M., Kuropatkin, N., Leget, P. -F., Lemos, P., Liddle, A. R., MacCrann, N., McCullough, J., Muir, J., Myles, J., Navarro-Alsina, A., Pandey, S., Park, Y., Porredon, A., Prat, J., Raveri, M., Rollins, R. P., Roodman, A., Rosenfeld, R., Rykoff, E. S., Sánchez, C., Sanchez, J., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Troxel, M. A., Tutusaus, I., Varga, T. N., Weaverdyck, N., Wechsler, R. H., Wu, H. -Y., Yanny, B., Yin, B., Zhang, Y., Zuntz, J., Abbott, T. M. C., Ade, P. A. R., Aguena, M., Allam, S., Allen, S. W., Anderson, A. J., Ansarinejad, B., Austermann, J. E., Bayliss, M., Beall, J. A., Bender, A. N., Benson, B. A., Bianchini, F., Brodwin, M., Brooks, D., Bryant, L., Burke, D. L., Canning, R. E. A., Carlstrom, J. E., Carretero, J., Castander, F. J., Chang, C. L., Chaubal, P., Chiang, H. C., Chou, T-L., Citron, R., Moran, C. Corbett, Costanzi, M., Crawford, T. M., Crites, A. T., da Costa, L. N., Pereira, M. E. S., Davis, T. M., de Haan, T., Dobbs, M. A., Doel, P., Everett, W., Farahi, A., Flaugher, B., Flores, A. M., Floyd, B., Gallicchio, J., Gaztanaga, E., George, E. M., Gladders, M. D., Gupta, N., Gutierrez, G., Halverson, N. W., Hinton, S. R., Hlavacek-Larrondo, J., Holder, G. P., Hollowood, D. L., Holzapfel, W. L., Hrubes, J. D., Huang, N., Hubmayr, J., Irwin, K. D., James, D. J., Kéruzoré, F., Khullar, G., Kim, K., Knox, L., Kraft, R., Kuehn, K., Lahav, O., Lee, A. T., Lee, S., Li, D., Lidman, C., Lima, M., Lowitz, A., Mahler, G., Mantz, A., Marshall, J. L., McDonald, M., McMahon, J. J., Mena-Fernández, J., Meyer, S. S., Miquel, R., Montgomery, J., Natoli, T., Nibarger, J. P., Noble, G. I., Novosad, V., Ogando, R. L. C., Padin, S., Paschos, P., Patil, S., Malagón, A. A. Plazas, Pryke, C., Reichardt, C. L., Roberson, J., Romer, A. K., Romero, C., Ruhl, J. E., Saliwanchik, B. R., Salvati, L., Samuroff, S., Sanchez, E., Santiago, B., Sarkar, A., Saro, A., Schaffer, K. K., Sharon, K., Sievers, C., Smecher, G., Smith, M., Somboonpanyakul, T., Sommer, M., Stalder, B., Stark, A. A., Stephen, J., Strazzullo, V., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Tucker, C., Tucker, D. L., Veach, T., Vieira, J. D., von der Linden, A., Wang, G., Whitehorn, N., Wu, W. L. K., Yefremenko, V., Young, M., Zebrowski, J. A., Zohren, H., Collaboration, DES, Collaboration, SPT
Cosmic shear, galaxy clustering, and the abundance of massive halos each probe the large-scale structure of the universe in complementary ways. We present cosmological constraints from the joint analysis of the three probes, building on the latest an
Externí odkaz:
http://arxiv.org/abs/2412.07765
Autor:
de Haan, Tijmen, Ting, Yuan-Sen, Ghosal, Tirthankar, Nguyen, Tuan Dung, Accomazzi, Alberto, Wells, Azton, Ramachandra, Nesar, Pan, Rui, Sun, Zechang
AstroSage-Llama-3.1-8B is a domain-specialized natural-language AI assistant tailored for research in astronomy, astrophysics, and cosmology. Trained on the complete collection of astronomy-related arXiv papers from 2007-2024 along with millions of s
Externí odkaz:
http://arxiv.org/abs/2411.09012
Autor:
Ge, F., Millea, M., Camphuis, E., Daley, C., Huang, N., Omori, Y., Quan, W., Anderes, E., Anderson, A. J., Ansarinejad, B., Archipley, M., Balkenhol, L., Benabed, K., Bender, A. N., Benson, B. A., Bianchini, F., Bleem, L. E., Bouchet, F. R., Bryant, L., Carlstrom, J. E., Chang, C. L., Chaubal, P., Chen, G., Chichura, P. M., Chokshi, A., Chou, T. -L., Coerver, A., Crawford, T. M., de Haan, T., Dibert, K. R., Dobbs, M. A., Doohan, M., Doussot, A., Dutcher, D., Everett, W., Feng, C., Ferguson, K. R., Fichman, K., Foster, A., Galli, S., Gambrel, A. E., Gardner, R. W., Goeckner-Wald, N., Gualtieri, R., Guidi, F., Guns, S., Halverson, N. W., Hivon, E., Holder, G. P., Holzapfel, W. L., Hood, J. C., Howe, D., Hryciuk, A., Kéruzoré, F., Khalife, A. R., Knox, L., Korman, M., Kornoelje, K., Kuo, C. -L., Lee, A. T., Levy, K., Lowitz, A. E., Lu, C., Maniyar, A., Martsen, E. S., Menanteau, F., Montgomery, J., Nakato, Y., Natoli, T., Noble, G. I., Pan, Z., Paschos, P., Phadke, K. A., Pollak, A. W., Prabhu, K., Rahimi, M., Rahlin, A., Reichardt, C. L., Riebel, D., Rouble, M., Ruhl, J. E., Schiappucci, E., Sobrin, J. A., Stark, A. A., Stephen, J., Tandoi, C., Thorne, B., Trendafilova, C., Umilta, C., Vieira, J. D., Vitrier, A., Wan, Y., Whitehorn, N., Wu, W. L. K., Young, M. R., Zebrowski, J. A.
From CMB polarization data alone we reconstruct the CMB lensing power spectrum, comparable in overall constraining power to previous temperature-based reconstructions, and an unlensed E-mode power spectrum. The observations, taken in 2019 and 2020 wi
Externí odkaz:
http://arxiv.org/abs/2411.06000
Autor:
Foster, A., Chokshi, A., Anderson, A. J., Ansarinejad, B., Archipley, M., Balkenhol, L., Benabed, K., Bender, A. N., Barron, D. R., Benson, B. A., Bianchini, F., Bleem, L. E., Bouchet, F. R., Bryant, L., Camphuis, E., Carlstrom, J. E., Chang, C. L., Chaubal, P., Chichura, P. M., Chou, T. -L., Coerver, A., Crawford, T. M., Daley, C., de Haan, T., Dibert, K. R., Dobbs, M. A., Doussot, A., Dutcher, D., Everett, W., Feng, C., Ferguson, K. R., Fichman, K., Galli, S., Gambrel, A. E., Gardner, R. W., Ge, F., Goeckner-Wald, N., Gualtieri, R., Guidi, F., Guns, S., Halverson, N. W., Hivon, E., Holder, G. P., Holzapfel, W. L., Hood, J. C., Hryciuk, A., Huang, N., Kéruzoré, F., Khalife, A. R., Knox, L., Korman, M., Kornoelje, K., Kuo, C. -L., Levy, K., Lowitz, A. E., Lu, C., Maniyar, A., Martsen, E. S., Menanteau, F., Millea, M., Montgomery, J., Nakato, Y., Natoli, T., Noble, G. I., Omori, Y., Pan, Z., Paschos, P., Phadke, K. A., Pollak, A. W., Prabhu, K., Quan, W., Raghunathan, S., Rahimi, M., Rahlin, A., Reichardt, C. L., Rouble, M., Ruhl, J. E., Schiappucci, E., Sobrin, J. A., Stark, A. A., Stephen, J., Tandoi, C., Thorne, B., Trendafilova, C., Umilta, C., Vieira, J. D., Vitrier, A., Wan, Y., Whitehorn, N., Wu, W. L. K., Young, M. R., Zebrowski, J. A.
The detection of satellite thermal emission at millimeter wavelengths is presented using data from the 3rd-Generation receiver on the South Pole Telescope (SPT-3G). This represents the first reported detection of thermal emission from artificial sate
Externí odkaz:
http://arxiv.org/abs/2411.03374
Autor:
Brehmer, Johann, Bresó, Víctor, de Haan, Pim, Plehn, Tilman, Qu, Huilin, Spinner, Jonas, Thaler, Jesse
We show that the Lorentz-Equivariant Geometric Algebra Transformer (L-GATr) yields state-of-the-art performance for a wide range of machine learning tasks at the Large Hadron Collider. L-GATr represents data in a geometric algebra over space-time and
Externí odkaz:
http://arxiv.org/abs/2411.00446
Given large data sets and sufficient compute, is it beneficial to design neural architectures for the structure and symmetries of each problem? Or is it more efficient to learn them from data? We study empirically how equivariant and non-equivariant
Externí odkaz:
http://arxiv.org/abs/2410.23179
Autor:
Ahlheit, Lukas, Nill, Chris, Svirskiy, Daniil, de Haan, Jan, Schroers, Simon, Alt, Wolfgang, Stiesdal, Nina, Lesanovsky, Igor, Hofferberth, Sebastian
Magic trapping of ground and Rydberg states, which equalizes the AC Stark shifts of these two levels, enables increased ground-to-Rydberg state coherence times. We measure via photon storage and retrieval how the ground-to-Rydberg state coherence dep
Externí odkaz:
http://arxiv.org/abs/2410.20901
Continuous normalizing flows are known to be highly expressive and flexible, which allows for easier incorporation of large symmetries and makes them a powerful tool for sampling in lattice field theories. Building on previous work, we present a gene
Externí odkaz:
http://arxiv.org/abs/2410.13161
Symmetries have proven useful in machine learning models, improving generalisation and overall performance. At the same time, recent advancements in learning dynamical systems rely on modelling the underlying Hamiltonian to guarantee the conservation
Externí odkaz:
http://arxiv.org/abs/2410.08087