Zobrazeno 1 - 10
of 138
pro vyhledávání: '"Haagerup, U."'
It is a long standing open problem whether the Thompson group $F$ is an amenable group. In this paper we show that if $A$, $B$, $C$ denote the standard generators of Thompson group $T$ and $D:=C B A^{-1}$ then $$\sqrt2+\sqrt3\,<\,\frac1{\sqrt{12}}||(
Externí odkaz:
http://arxiv.org/abs/1705.00198
Let $F$ denote the Thompson group with standard generators $A=x_0$, $B=x_1$. It is a long standing open problem whether $F$ is an amenable group. By a result of Kesten from 1959, amenability of $F$ is equivalent to $$(i)\qquad ||I+A+B||=3$$ and to $$
Externí odkaz:
http://arxiv.org/abs/1409.1486
Autor:
Aagaard, L., Haagerup, U.
Let T be the quasi-nilpotent DT-operator. By use of Voiculescu's amalgamated R-transform we compute the moments of $(T-\lambda 1)^*(T-\lambda 1)$, where $\lambda \in \mathbb C$, and the Brown-measure of $T+\sqrt{\epsilon} Y$, where Y is a circular el
Externí odkaz:
http://arxiv.org/abs/math/0406170
Let N and M be von Neumann algebras. It is proved that L^p(N) does not Banach embed in L^p(M) for N infinite, M finite, 1 < or = p < 2. The following considerably stronger result is obtained (which implies this, since the Schatten p-class C_p embeds
Externí odkaz:
http://arxiv.org/abs/math/0005150
Autor:
Asaeda, M., Haagerup, U.
Publikováno v:
Commun.Math.Phys. 202, 1-63 (1999)
We prove existence of subfactors of finite depth of the hyperfinite II_1 factor with indices (5+sqrt{13})/2= 4.302... and (5+sqrt{17})/2=4.561.... The existence of the former was announced by the second named author in 1993 and that of the latter has
Externí odkaz:
http://arxiv.org/abs/math/9803044
Autor:
Haagerup, U., Pisier, Gilles
Let $u:A\to B$ be a bounded linear operator between two $C^*$-algebras $A,B$. The following result was proved by the second author. Theorem 0.1. There is a numerical constant $K_1$ such that for all finite sequences $x_1,\ldots, x_n$ in $A$ we have $
Externí odkaz:
http://arxiv.org/abs/math/9302214
Autor:
Haagerup, U.
Publikováno v:
Haagerup, U 2016, ' On the uniqueness of the injective III1 factor ', Documenta Mathematica, vol. 21, no. 2016, pp. 1193-1226 .
We give a new proof of a theorem due to Alain Connes, that an injective factor N of type III1 with separable predual and with trivial bicentralizer is isomorphic to the Araki-Woods type III1 factor R∞. This, combined with the author's solution to t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3062::d80920453d22c30596d680cfe36abfd7
https://findresearcher.sdu.dk:8443/ws/files/124239310/On_the_Uniqueness_of_the_Injective_III1_Factor.pdf
https://findresearcher.sdu.dk:8443/ws/files/124239310/On_the_Uniqueness_of_the_Injective_III1_Factor.pdf
Autor:
Haagerup, U.
Publikováno v:
Haagerup, U 2016, A new look at C ∗-simplicity and the unique trace property of a group . in T M Carlsen, N S Larsen, S Neshveyev & C Skau (eds), Operator Algebras and Applications : The Abel Symposium 2015 . Springer, Abel Symposia, vol. 12, pp. 161-170, The Abel Symposium 2015, Coastal Express (Hurtigruten), Norway, 07/08/2015 . https://doi.org/10.1007/978-3-319-39286-8_7
We characterize when the reduced C∗-algebra of a non-trivial group has unique tracial state, respectively, is simple, in terms of Dixmier-type properties of the group C∗-algebra.We also give a simple proof of the recent result by Breuillard, Kala
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3062::49a9bb76d5b468d85554c63a089e95ae
https://portal.findresearcher.sdu.dk/da/publications/0d65bc04-41fe-4f7a-9445-c4f5fef539e2
https://portal.findresearcher.sdu.dk/da/publications/0d65bc04-41fe-4f7a-9445-c4f5fef539e2
Publikováno v:
Haagerup, U, Rosenthal, H P & Sukochev, F A 2003, ' Banach embedding properties of non-commutative Lp spaces. ', Memoirs of the American Mathematical Society .
Scopus-Elsevier
Scopus-Elsevier
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::f3d64f5adb1da5d5a456dc311d705f2f
https://portal.findresearcher.sdu.dk/da/publications/276172e0-ba9a-11dc-9626-000ea68e967b
https://portal.findresearcher.sdu.dk/da/publications/276172e0-ba9a-11dc-9626-000ea68e967b