Zobrazeno 1 - 10
of 42
pro vyhledávání: '"Ha Huy Vui"'
Autor:
Hà, Huy-Vui, Hoàng, Phi-Dũng
Let $f$ be a polynomial function of $n$ variables. In this paper, we study stability of global H\"{o}lderian error bound for a nonempty sublevel set $[f \le t]$ under a perturbation of $t$. In this paper, we give: * Criteria for the existence of a gl
Externí odkaz:
http://arxiv.org/abs/1902.05972
Autor:
Ha, Huy Vui, Nguyen, Thi Thao
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 May 2022 509(1)
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 February 2014 410(2):541-560
Autor:
Hà, Huy Vui, Phạm, Tiên Sȯn
Publikováno v:
In Journal of Pure and Applied Algebra 2009 213(11):2167-2176
Autor:
Ha Huy Vui
Publikováno v:
Singularities — Kagoshima 2017.
Autor:
Ha Huy Vui
Publikováno v:
Studia Mathematica. 240:161-176
Autor:
Tien Son Pham, Ha Huy Vui
In full generality, minimizing a polynomial function over a closed semi-algebraic set requires complex mathematical equations. This book explains recent developments from singularity theory and semi-algebraic geometry for studying polynomial optimiza
Autor:
Ha, Huy Vui, Nguyen, Thi Thao
Publikováno v:
Mathematische Zeitschrift; Aug2020, Vol. 295 Issue 3/4, p1067-1093, 27p
Autor:
Ha Huy Vui
Publikováno v:
SIAM Journal on Optimization. 23:917-933
Let $f \colon \mathbb{R}^n \to \mathbb{R}$ be a polynomial and $S = \{x \in \mathbb{R}^n: f(x) \le 0\}$. Let $f_+(x) = \max\{0,f(x)\}$. If there exist $c > 0, \alpha >0, \beta > 0$ such that $d(x,S) \le c([f(x)]_+^\alpha + [f(x)]_+^\beta)$ for all $x
Autor:
Ha Huy Vui, Pham Tien Son
Publikováno v:
SIAM Journal on Optimization. 20:3082-3103
This paper studies the representation of a positive polynomial $f$ on a closed semialgebraic set $S:=\{x\in\mathbb{R}^n\mid g_i(x)=0, i=1,\dots,l, h_j(x)\geq0, j=1,\dots,m\}$ modulo the so-called critical ideal $I(f,S)$ of $f$ on $S$. Under a constra