Zobrazeno 1 - 10
of 66
pro vyhledávání: '"HULSE, THOMAS A."'
Autor:
Malloy, James, Marlowe, Erin, Jensen, Christopher J., Liu, Isaac S., Hulse, Thomas, Murray, Anne F., Bryan, Daniel, Denes, Thomas G., Gilbert, Dustin A., Yin, Gen, Liu, Kai
Publikováno v:
Nanoscale, 16, 15094 (2024)
The COVID-19 pandemic has shown the urgent need for the development of efficient, durable, reusable and recyclable filtration media for the deep-submicron size range. Here we demonstrate a multifunctional filtration platform using porous metallic nan
Externí odkaz:
http://arxiv.org/abs/2407.14946
Autor:
Attanayake, Supun B., Chanda, Amit, Hulse, Thomas, Das, Raja, Phan, Manh-Huong, Srikanth, Hariharan
The inherent existence of multi phases in iron oxide nanostructures highlights the significance of them being investigated deliberately to understand and possibly control the phases. Here, the effects of annealing at 250 0C with a variable duration o
Externí odkaz:
http://arxiv.org/abs/2303.06684
We study a Dirichlet series in two variables which counts primitive three-term arithmetic progressions of squares. We show that this multiple Dirichlet series has meromorphic continuation to $\mathbb{C}^2$ and use Tauberian methods to obtain counts f
Externí odkaz:
http://arxiv.org/abs/2007.14324
We produce nontrivial asymptotic estimates for shifted sums of the form $\sum a(h)b(m)c(2m-h)$, in which $a(n),b(n),c(n)$ are un-normalized Fourier coefficients of holomorphic cusp forms. These results are unconditional, but we demonstrate how to str
Externí odkaz:
http://arxiv.org/abs/1911.09216
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We introduce a shifted convolution sum that is parametrized by the squarefree natural number $t$. The asymptotic growth of this series depends explicitly on whether or not $t$ is a \emph{congruent number}, an integer that is the area of a rational ri
Externí odkaz:
http://arxiv.org/abs/1804.02570
Publikováno v:
Alg. Number Th. 15 (2021) 1-27
The Gauss circle problem concerns the difference $P_2(n)$ between the area of a circle of radius $\sqrt{n}$ and the number of lattice points it contains. In this paper, we study the Dirichlet series with coefficients $P_2(n)^2$, and prove that this s
Externí odkaz:
http://arxiv.org/abs/1705.04771
Publikováno v:
Forum of Mathematics, Sigma 6 (2018) e24
The generalized Gauss circle problem concerns the lattice point discrepancy of large spheres. We study the Dirichlet series associated to $P_k(n)^2$, where $P_k(n)$ is the discrepancy between the volume of the $k$-dimensional sphere of radius $\sqrt{
Externí odkaz:
http://arxiv.org/abs/1703.10347
Publikováno v:
Journal of Number Theory 177 (2017), 112-135
We extend the axiomatization for detecting and quantifying sign changes of Meher and Murty to sequences of complex numbers. We further generalize this result when the sequence is comprised of the coefficients of an $L$-function. As immediate applicat
Externí odkaz:
http://arxiv.org/abs/1606.00067
Publikováno v:
Journal of Number Theory 173 (2017), 394-415
Let $f$ be a weight $k$ holomorphic cusp form of level one, and let $S_f(n)$ denote the sum of the first $n$ Fourier coefficients of $f$. In analogy with Dirichlet's divisor problem, it is conjectured that $S_f(X) \ll X^{\frac{k-1}{2} + \frac{1}{4} +
Externí odkaz:
http://arxiv.org/abs/1512.05502