Zobrazeno 1 - 10
of 80
pro vyhledávání: '"HUANG, ZIYAO"'
Despite the remarkable process of talking-head-based avatar-creating solutions, directly generating anchor-style videos with full-body motions remains challenging. In this study, we propose Make-Your-Anchor, a novel system necessitating only a one-mi
Externí odkaz:
http://arxiv.org/abs/2403.16510
The advancement of generative AI has extended to the realm of Human Dance Generation, demonstrating superior generative capacities. However, current methods still exhibit deficiencies in achieving spatiotemporal consistency, resulting in artifacts li
Externí odkaz:
http://arxiv.org/abs/2310.14780
Publikováno v:
In Computers in Human Behavior October 2024 159
With the rapid progress of generation technology, it has become necessary to attribute the origin of fake images. Existing works on fake image attribution perform multi-class classification on several Generative Adversarial Network (GAN) models and o
Externí odkaz:
http://arxiv.org/abs/2202.13843
Autor:
Huang, Ziyao, Wu, Weiwei, Fu, Chenchen, Chau, Vincent, Liu, Xiang, Wang, Jianping, Luo, Junzhou
Age-of-Information (AoI) is an application layer metric that has been widely adopted to quantify the information freshness of each information source. However, few works address the impact of probabilistic transmission failures on satisfying the hars
Externí odkaz:
http://arxiv.org/abs/2112.02786
Autor:
Huang, Ziyao1 (AUTHOR) 15320180155366@stu.xmu.edu.cn, Yang, Fang2 (AUTHOR) yangfang@xmu.edu.cn
Publikováno v:
Mathematics (2227-7390). Aug2024, Vol. 12 Issue 15, p2344. 31p.
Autor:
Huang, Ziyao, Sun, Kedong, Luo, Zhenyu, Zhang, Junlei, Zhou, Huanli, Yin, Hang, Liang, Zhile, You, Jian
Publikováno v:
In Journal of Controlled Release June 2024 370:773-797
Autor:
Li, Lei, Gao, Ke, Cao, Juan, Huang, Ziyao, Weng, Yepeng, Mi, Xiaoyue, Yu, Zhengze, Li, Xiaoya, xia, Boyang
Single domain generalization is a challenging case of model generalization, where the models are trained on a single domain and tested on other unseen domains. A promising solution is to learn cross-domain invariant representations by expanding the c
Externí odkaz:
http://arxiv.org/abs/2103.16050
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.