Zobrazeno 1 - 10
of 305
pro vyhledávání: '"HOFMANN, STEVE"'
We consider the Kato square root problem for non-divergence second order elliptic operators $L =- a_{ij} D_iD_j$, and, especially, the normalized adjoints of such operators. In particular, our results are applicable to the case of real coefficients h
Externí odkaz:
http://arxiv.org/abs/2304.14694
This is the final part of a series of papers where we study perturbations of divergence form second order elliptic operators $-\operatorname{div} A \nabla$ by first and zero order terms, whose complex coefficients lie in critical spaces, via the meth
Externí odkaz:
http://arxiv.org/abs/2302.02746
In this paper, we continue the study of a class of second order elliptic operators of the form $\mathcal L=\mbox{div}(A\nabla\cdot)$ in a domain above a Lipschitz graph in $\mathbb R^n,$ where the coefficients of the matrix $A$ satisfy a Carleson mea
Externí odkaz:
http://arxiv.org/abs/2207.10366
We establish $L^2$ boundedness of all "nice" parabolic singular integrals on "Good Parabolic Graphs", aka {\em regular} Lip(1,1/2) graphs. The novelty here is that we include non-homogeneous kernels, which are relevant to the theory of parabolic unif
Externí odkaz:
http://arxiv.org/abs/2103.12830
Publikováno v:
Analysis & PDE 16 (2023) 1061-1088
Let $E \subset \mathbb R^{n+1}$ be a parabolic uniformly rectifiable set. We prove that every bounded solution $u$ to $$\partial_tu- \Delta u=0, \quad \text{in} \quad \mathbb R^{n+1}\setminus E$$ satisfies a Carleson measure estimate condition. An im
Externí odkaz:
http://arxiv.org/abs/2103.12502
We prove that parabolic uniformly rectifiable sets admit (bilateral) corona decompositions with respect to regular Lip(1,1/2) graphs. Together with our previous work, this allows us to conclude that if $\Sigma\subset\mathbb{R}^{n+1}$ is parabolic Ahl
Externí odkaz:
http://arxiv.org/abs/2103.12497
Let $\Omega\subset\mathbb{R}^{n+1}$, $n\ge 2$, be a 1-sided non-tangentially accessible domain (aka uniform domain), that is, $\Omega$ satisfies the interior Corkscrew and Harnack chain conditions, which are respectively scale-invariant/quantitative
Externí odkaz:
http://arxiv.org/abs/2103.10046
Let $\Sigma$ be a closed subset of $\mathbb{R}^ {n+1}$ which is parabolic Ahlfors-David regular and assume that $\Sigma$ satisfies a 2-sided corkscrew condition. Assume, in addition, that $\Sigma$ is either time-forwards Ahlfors-David regular, time-b
Externí odkaz:
http://arxiv.org/abs/2102.11912
Autor:
Hofmann, Steve, Zhang, Guoming
In this paper we establish commmutator estimates for the Dirichlet-to-Neumann Map associated to a divergence form elliptic operator in the upper half-space $\mathbb{R}^{n+1}_+:=\{(x,t)\in \mathbb{R}^n \times (0,\infty)\}$, with uniformly complex elli
Externí odkaz:
http://arxiv.org/abs/2102.06835